Cyclically covering subspaces in F2n

被引:2
|
作者
Aaronson, James [1 ]
Groenland, Carla [1 ]
Johnston, Tom [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
Cyclically covering subspaces; Cyclic shift; Isbell's conjecture; Smallest codimension; SETS;
D O I
10.1016/j.jcta.2021.105436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subspace of F-2(n) is called cyclically covering if every vector in F-2(n) has a cyclic shift which is inside the subspace. Let h(2)(n) denote the largest possible codimension of a cyclically covering subspace of F-2(n). We show that h(2)(p) = 2for every prime psuch that 2 is a primitive root modulo p, which, assuming Artin's conjecture, answers a question of Peter Cameron from 1991. We also prove various bounds on h(2)(ab) depending on h(2)(a) and h(2)(b) and extend some of our results to a more general set-up proposed by Cameron, Ellis and Raynaud. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:41
相关论文
共 50 条
  • [31] Further Study of 2-to-1 Mappings Over F2n
    Li, Kangquan
    Mesnager, Sihem
    Qu, Longjiang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (06) : 3486 - 3496
  • [32] D-property for APN functions from F2n to F2n+1
    Taniguchi, Hiroaki
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2023, 15 (03): : 627 - 647
  • [33] THE RATIO OF THE NUCLEON STRUCTURE FUNCTIONS F2N FOR IRON AND DEUTERIUM
    AUBERT, JJ
    BASSOMPIERRE, G
    BECKS, KH
    BEST, C
    BOHM, E
    DEBOUARD, X
    BRASSE, FW
    BROLL, C
    BROWN, S
    CARR, J
    CLIFFT, RW
    COBB, JH
    COIGNET, G
    COMBLEY, F
    COURT, GR
    DAGOSTINI, G
    DAU, WD
    DAVIES, JK
    DECLAIS, Y
    DOBINSON, RW
    DOSSELLI, U
    DREES, J
    EDWARDS, AW
    EDWARDS, M
    FAVIER, J
    FERRERO, MI
    FLAUGER, W
    GABATHULER, E
    GAMET, R
    GAYLER, J
    GERHARDT, V
    GOSSLING, C
    HAAS, J
    HAMACHER, K
    HAYMAN, P
    HENCKES, M
    KORBEL, V
    LANDGRAF, U
    LEENEN, M
    MAIRE, M
    MINSSIEUX, H
    MOHR, W
    MONTGOMERY, HE
    MOSER, K
    MOUNT, RP
    NORTON, PR
    MCNICHOLAS, J
    OSBORNE, AM
    PAYRE, P
    PERONI, C
    PHYSICS LETTERS B, 1983, 123 (3-4) : 275 - 278
  • [34] SIX NEW CLASSES OF PERMUTATION TRINOMIALS OVER F2n
    Wang, Yanping
    Zhang, Weiguo
    Zha, Zhengbang
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (03) : 1946 - 1961
  • [35] Further study of 2-to-1 mappings over F2n
    Li, Kangquan
    Mesnager, Sihem
    Qu, Longjiang
    2019 NINTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2019,
  • [36] Equally spaced polynomials, dual bases, and multiplication in F2n
    Gollman, D
    IEEE TRANSACTIONS ON COMPUTERS, 2002, 51 (05) : 588 - 591
  • [37] Parallel multiplication in F2n using condensed matrix representation
    Negre, Christophe
    SECRYPT 2006: Proceedings of the International Conference on Security and Cryptography, 2006, : 254 - 259
  • [38] Linear codes from simplicial complexes over F2n
    Liu, Hongwei
    Yu, Zihao
    DESIGNS CODES AND CRYPTOGRAPHY, 2024, 92 (10) : 2993 - 3016
  • [39] Covering by complements of subspaces .2.
    Clark, WE
    Shekhtman, B
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (01) : 251 - 254
  • [40] The compositional inverse of a class of linearized permutation polynomials over F2n, n odd
    Wu, Baofeng
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 29 : 34 - 48