Parallel multiplication in F2n using condensed matrix representation

被引:0
|
作者
Negre, Christophe [1 ]
机构
[1] Univ Perpignan, LP2A, Equpe DALI, F-66000 Perpignan, France
关键词
finite field; multiplication; matrix representation; irreducible trinomial;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we explore a matrix representation of binary fields F-2n defined by an irreducible trinomial p = X-n + X-k + 1. We obtain a multiplier with time complexity of T-A + ([log(2)(n)])T-x and space complexity of (2n - 1)n AND and (2n - 1) (n - 1) XOR. This multiplier reaches the lower bound on time complexity. Until now this was possible only for binary field defined by AOP (Silverman, 1999), which are quite few. The interest of this multiplier remains theoretical since the size of the architecture is roughly two times bigger than usual polynomial basis multiplier (Mastrovito, 1991; Koc and Sunar, 1999).
引用
收藏
页码:254 / 259
页数:6
相关论文
共 50 条
  • [1] Equally spaced polynomials, dual bases, and multiplication in F2n
    Gollman, D
    IEEE TRANSACTIONS ON COMPUTERS, 2002, 51 (05) : 588 - 591
  • [2] CONVOLUTED F2N
    LORD, G
    FIBONACCI QUARTERLY, 1975, 13 (03): : 287 - 287
  • [3] A proof of the Beierle-Kranz-Leander conjecture related to lightweight multiplication in F2n
    Mesnager, Sihem
    Kim, Kwang Ho
    Jo, Dujin
    Choe, Junyop
    Han, Munhyon
    Lee, Dok Nam
    DESIGNS CODES AND CRYPTOGRAPHY, 2020, 88 (01) : 51 - 62
  • [4] Crooked maps in F2n
    Kyureghyan, Gohar M.
    FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (03) : 713 - 726
  • [5] On orthomorphisms over F2n
    School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, China
    不详
    Beijing Youdian Daxue Xuebao, 2006, 1 (115-118):
  • [6] 关于F2N(Fe)/F2N(D)的一个经验公式
    何祯民
    河北师范大学学报, 1986, (S1) : 226 - 227
  • [7] Improved identifying codes in F2n
    Exoo, Geoffrey
    Laihonen, Tero
    Ranto, Sanna
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 1021 - +
  • [8] Cyclically covering subspaces in F2n
    Aaronson, James
    Groenland, Carla
    Johnston, Tom
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 181
  • [9] Antiderivative functions over F2n
    Suder, Valentin
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 82 (1-2) : 435 - 447
  • [10] Towards factoring in SL(2, F2n)
    Petit, Christophe
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 71 (03) : 409 - 431