Cyclically covering subspaces in F2n

被引:2
|
作者
Aaronson, James [1 ]
Groenland, Carla [1 ]
Johnston, Tom [1 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
Cyclically covering subspaces; Cyclic shift; Isbell's conjecture; Smallest codimension; SETS;
D O I
10.1016/j.jcta.2021.105436
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A subspace of F-2(n) is called cyclically covering if every vector in F-2(n) has a cyclic shift which is inside the subspace. Let h(2)(n) denote the largest possible codimension of a cyclically covering subspace of F-2(n). We show that h(2)(p) = 2for every prime psuch that 2 is a primitive root modulo p, which, assuming Artin's conjecture, answers a question of Peter Cameron from 1991. We also prove various bounds on h(2)(ab) depending on h(2)(a) and h(2)(b) and extend some of our results to a more general set-up proposed by Cameron, Ellis and Raynaud. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:41
相关论文
共 50 条
  • [1] On trivial cyclically covering subspaces of Fqn
    Huang, Jing
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 96
  • [2] CONVOLUTED F2N
    LORD, G
    FIBONACCI QUARTERLY, 1975, 13 (03): : 287 - 287
  • [3] Crooked maps in F2n
    Kyureghyan, Gohar M.
    FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (03) : 713 - 726
  • [4] On orthomorphisms over F2n
    School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, China
    不详
    Beijing Youdian Daxue Xuebao, 2006, 1 (115-118):
  • [5] 关于F2N(Fe)/F2N(D)的一个经验公式
    何祯民
    河北师范大学学报, 1986, (S1) : 226 - 227
  • [6] Improved identifying codes in F2n
    Exoo, Geoffrey
    Laihonen, Tero
    Ranto, Sanna
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 1021 - +
  • [7] Antiderivative functions over F2n
    Suder, Valentin
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 82 (1-2) : 435 - 447
  • [8] Towards factoring in SL(2, F2n)
    Petit, Christophe
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 71 (03) : 409 - 431
  • [9] F2N Market品牌形象
    Yvette
    金点设计奖
    设计, 2020, 33 (10) : 150 - 150
  • [10] On the Non linearity of Discrete Logarithm in F2n
    Hakala, Risto M.
    Nyberg, Kaisa
    SEQUENCES AND THEIR APPLICATIONS-SETA 2010, 2010, 6338 : 333 - 345