Parallel multiplication in F2n using condensed matrix representation

被引:0
|
作者
Negre, Christophe [1 ]
机构
[1] Univ Perpignan, LP2A, Equpe DALI, F-66000 Perpignan, France
关键词
finite field; multiplication; matrix representation; irreducible trinomial;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we explore a matrix representation of binary fields F-2n defined by an irreducible trinomial p = X-n + X-k + 1. We obtain a multiplier with time complexity of T-A + ([log(2)(n)])T-x and space complexity of (2n - 1)n AND and (2n - 1) (n - 1) XOR. This multiplier reaches the lower bound on time complexity. Until now this was possible only for binary field defined by AOP (Silverman, 1999), which are quite few. The interest of this multiplier remains theoretical since the size of the architecture is roughly two times bigger than usual polynomial basis multiplier (Mastrovito, 1991; Koc and Sunar, 1999).
引用
收藏
页码:254 / 259
页数:6
相关论文
共 50 条
  • [21] Involutions Over the Galois Field F2n
    Charpin, Pascale
    Mesnager, Sihem
    Sarkar, Sumanta
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (04) : 2266 - 2276
  • [22] A note on a class of quadratic permutations over F2n
    Laigle-Chapuy, Yann
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS AND ERROR-CORRECTING CODES, PROCEEDINGS, 2007, 4851 : 130 - +
  • [23] An F2n [t]-variant of Waring's problem
    Gallardo, L
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (02): : 117 - 121
  • [24] Bent Functions From Involutions Over F2n
    Coulter, Robert S.
    Mesnager, Sihem
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (04) : 2979 - 2986
  • [25] On some permutation binomials and trinomials over F2n
    Bhattacharya, Srimanta
    Sarkar, Sumanta
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 82 (1-2) : 149 - 160
  • [26] On the restricted Waring problem over F2n [t]
    Gallardo, L
    ACTA ARITHMETICA, 2000, 92 (02) : 109 - 113
  • [27] A Class of New Permutation Polynomials over F2n
    Liu, Qian
    Liu, Ximeng
    Zou, Jian
    JOURNAL OF MATHEMATICS, 2021, 2021
  • [28] On almost perfect nonlinear functions over F2n
    Berger, Thierry P.
    Canteaut, Anne
    Charpin, Pascale
    Laigle-Chapuy, Yann
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (09) : 4160 - 4170
  • [29] Regular complete permutation polynomials over F2n
    Xu, Xiaofang
    Zeng, Xiangyong
    Zhang, Shasha
    DESIGNS CODES AND CRYPTOGRAPHY, 2022, 90 (03) : 545 - 575
  • [30] A multiplier architecture for user selectable extensions of F2n
    Mullin, RC
    UTILITAS MATHEMATICA, 2003, 63 : 81 - 87