Variable Selection in Regression Models Using Global Sensitivity Analysis

被引:4
|
作者
Becker, William [1 ]
Paruolo, Paolo [1 ]
Saltelli, Andrea [2 ]
机构
[1] European Commiss, Joint Res Ctr, Ispra, VA, Italy
[2] Univ Oberta Catalunya, Open Evidence Res, Barcelona, Spain
关键词
model selection; Monte Carlo; sensitivity analysis; simulation; FALSE DISCOVERY RATE;
D O I
10.1515/jtse-2018-0025
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Global sensitivity analysis is primarily used to investigate the effects of uncertainties in the input variables of physical models on the model output. This work investigates the use of global sensitivity analysis tools in the context of variable selection in regression models. Specifically, a global sensitivity measure is applied to a criterion of model fit, hence defining a ranking of regressors by importance; a testing sequence based on the 'Pantula-principle' is then applied to the corresponding nested submodels, obtaining a novel model-selection method. The approach is demonstrated on a growth regression case study, and on a number of simulation experiments, and it is found competitive with existing approaches to variable selection.
引用
收藏
页码:187 / 233
页数:47
相关论文
共 50 条
  • [31] Modified see variable selection for linear instrumental variable regression models
    Zhao, Peixin
    Xue, Liugen
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (14) : 4852 - 4861
  • [32] Robust variable selection for finite mixture regression models
    Qingguo Tang
    R. J. Karunamuni
    [J]. Annals of the Institute of Statistical Mathematics, 2018, 70 : 489 - 521
  • [33] Variable selection for semiparametric regression models with iterated penalisation
    Dai, Ying
    Ma, Shuangge
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (02) : 283 - 298
  • [34] Ensemble estimation and variable selection with semiparametric regression models
    Shin, Sunyoung
    Liu, Yufeng
    Cole, Stephen R.
    Fine, Jason P.
    [J]. BIOMETRIKA, 2020, 107 (02) : 433 - 448
  • [35] Variable selection of varying coefficient models in quantile regression
    Noh, Hohsuk
    Chung, Kwanghun
    Van Keilegom, Ingrid
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 1220 - 1238
  • [36] Variable selection for linear regression models with random covariates
    Nkiet, GM
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (12): : 1105 - 1110
  • [37] VARIABLE SELECTION PROBLEM IN THE CENSORED REGRESSION-MODELS
    KAO, C
    [J]. ECONOMICS LETTERS, 1986, 22 (04) : 353 - 357
  • [38] Variable selection of the quantile varying coefficient regression models
    Weihua Zhao
    Riquan Zhang
    Yazhao Lv
    Jicai Liu
    [J]. Journal of the Korean Statistical Society, 2013, 42 : 343 - 358
  • [39] Quantile function regression and variable selection for sparse models
    Yoshida, Takuma
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04): : 1196 - 1221
  • [40] Bayesian structured variable selection in linear regression models
    Min Wang
    Xiaoqian Sun
    Tao Lu
    [J]. Computational Statistics, 2015, 30 : 205 - 229