Model-Based Estimation of Lithium Concentrations and Temperature in Batteries Using Soft-Constrained Dual Unscented Kalman Filtering

被引:33
|
作者
Marelli, Stefano [1 ]
Corno, Matteo [1 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
关键词
Mathematical model; Computational modeling; Electrodes; Estimation; Lithium; Kalman filters; Electrolytes; Dual unscented Kalman filter; electrochemical– thermal model; Li-ion batteries; soft-constraint; ION BATTERY; ELECTROCHEMICAL MODEL; MANAGEMENT-SYSTEMS; CHARGE ESTIMATION; STATE;
D O I
10.1109/TCST.2020.2974176
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This brief proposes an electrochemical model-based estimator of the Lithium-ion (Li-ion) concentration and temperature of a Li-ion cell. The use of the electrochemical approach allows for the estimation of the spatial distribution of lithium concentration and temperature. The estimation is based on a soft-constrained dual unscented Kalman filter (DUKF) designed on the pseudo-2-D model of a Li-ion cell. The dual structure, along with parallelization, reduces the computational complexity, whereas the soft-constraint improves convergence. A simulation analysis validates the approach showing bulk state of charge (SoC) estimation error lower than 1.5%, solid-phase lithium concentration estimation errors of less than 4%, and temperature estimation errors within 0.2 degrees C from the true value in any point of the cell.
引用
收藏
页码:926 / 933
页数:8
相关论文
共 50 条
  • [31] Model-Based Electrochemical Estimation of Lithium-Ion Batteries
    Smith, Kandler A.
    Rahn, Christopher D.
    Wang, Chao-Yang
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 AND 2, 2008, : 122 - 127
  • [32] Model-based state estimation for lithium-ion batteries
    Rausch, Matthias
    Klein, Reinhardt
    Streif, Stefan
    Pankiewitz, Christian
    Findeisen, Rolf
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2014, 62 (04) : 296 - 311
  • [33] Prognostics of Lithium-Ion batteries using knowledge-constrained machine learning and Kalman filtering
    Bai, Guangxing
    Su, Yunsheng
    Rahman, Maliha Maisha
    Wang, Zequn
    [J]. RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 231
  • [34] State of Charge Estimation for Lithium-Ion Batteries Using Simple Recurrent Units and Unscented Kalman Filter
    Zhang, Zhaowei
    Zhang, Xinghao
    He, Zhiwei
    Zhu, Chunxiang
    Song, Wenlong
    Gao, Mingyu
    Song, Yining
    [J]. FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [35] A New State of Charge Estimation Algorithm for Lithium-Ion Batteries Based on the Fractional Unscented Kalman Filter
    Chen, Yixing
    Huang, Deqing
    Zhu, Qiao
    Liu, Weiqun
    Liu, Congzhi
    Xiong, Neng
    [J]. ENERGIES, 2017, 10 (09)
  • [36] Unscented Kalman Filter based State of Charge Estimation for the Equalization of Lithium-ion Batteries on Electrical Vehicles
    Muratoglu, Yusuf
    Alkaya, Alkan
    [J]. ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2019, 9 (06) : 4876 - 4882
  • [37] Online estimation of state-of-charge based on the H infinity and unscented Kalman filters for lithium ion batteries
    Yu, Quanqing
    Xiong, Rui
    Lin, Cheng
    [J]. 8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2791 - 2796
  • [38] State Estimation of Lithium Batteries for Energy Storage Based on Dual Extended Kalman Filter
    Xu, Xinming
    Wu, Di
    Yang, Lei
    Zhang, Huai
    Liu, Guangjun
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020
  • [39] Model-based sensor fusion of multimodal cardiorespiratory signals using an unscented Kalman filter
    Linschmann, Onno
    Leonhardt, Steffen
    Antink, Christoph Hoog
    [J]. AT-AUTOMATISIERUNGSTECHNIK, 2020, 68 (11) : 933 - 940
  • [40] State-of-charge estimation for lithium-ion batteries based on modified unscented Kalman filter using improved parameter identification
    Yao, Bin
    Cai, Yongxiang
    Liu, Wei
    Wang, Yang
    Chen, Xin
    Liao, Qiangqiang
    Fu, Zaiguo
    Cheng, Zhiyuan
    [J]. INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2024, 19 (05):