Unscented Kalman Filter based State of Charge Estimation for the Equalization of Lithium-ion Batteries on Electrical Vehicles

被引:0
|
作者
Muratoglu, Yusuf [1 ]
Alkaya, Alkan [1 ]
机构
[1] Mersin Univ, Dept Elect & Elect Engn, Mersin, Turkey
关键词
combined dynamic modelling; li-ion battery; passive balance control; SoC based equalization; SoC estimation; unscented Kalman filter; SOC ESTIMATION; OF-CHARGE; MANAGEMENT-SYSTEM; MODEL; NETWORKS;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Accurate state of charge estimation and robust cell equalization are vital in optimizing the battery management system and improving energy management in electric vehicles. In this paper, the passive balance control based equalization scheme is proposed using a combined dynamic battery model and the unscented Kalman filter based state of charge estimation. The lithium-ion battery is modeled with a 2nd order Thevenin equivalent circuit. The combined dynamic model of the lithiumion battery, where the model parameters are estimated depending on the state of charge, and the unscented Kalman filter based state of charge, are used to improve the performance of the passive balance control based equalization. The experimental results verified the superiority of the combined dynamic battery model and the unscented Kalman filter algorithm with very tight error bounds. Furthermore, these results showed that the presented passive balance control based equalization scheme is suitable for the equalization of series-connected lithium-ion batteries.
引用
收藏
页码:4876 / 4882
页数:7
相关论文
共 50 条
  • [1] State-of-Charge Estimation of Lithium-ion Batteries using Extended Kalman filter and Unscented Kalman filter
    Jokic, Ivan
    Zecevic, Zarko
    Krstajic, Bozo
    [J]. 2018 23RD INTERNATIONAL SCIENTIFIC-PROFESSIONAL CONFERENCE ON INFORMATION TECHNOLOGY (IT), 2018,
  • [2] A New State of Charge Estimation Algorithm for Lithium-Ion Batteries Based on the Fractional Unscented Kalman Filter
    Chen, Yixing
    Huang, Deqing
    Zhu, Qiao
    Liu, Weiqun
    Liu, Congzhi
    Xiong, Neng
    [J]. ENERGIES, 2017, 10 (09)
  • [3] State of Charge Estimation of Lithium-Ion Batteries Based on Fuzzy Fractional-Order Unscented Kalman Filter
    Chen, Liping
    Chen, Yu
    Lopes, Antonio M.
    Kong, Huifang
    Wu, Ranchao
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (03)
  • [4] A modified model based state of charge estimation of power lithium-ion batteries using unscented Kalman filter
    Tian, Yong
    Xia, Bizhong
    Sun, Wei
    Xu, Zhihui
    Zheng, Weiwei
    [J]. JOURNAL OF POWER SOURCES, 2014, 270 : 619 - 626
  • [5] State of charge estimation of lithium-ion battery based on extended Kalman filter and unscented Kalman filter techniques
    Priya, Rajbala Purnima
    Sanjay, R.
    Sakile, Rajakumar
    [J]. ENERGY STORAGE, 2023, 5 (03)
  • [6] State of Charge Estimation for Lithium-Ion Batteries Using Simple Recurrent Units and Unscented Kalman Filter
    Zhang, Zhaowei
    Zhang, Xinghao
    He, Zhiwei
    Zhu, Chunxiang
    Song, Wenlong
    Gao, Mingyu
    Song, Yining
    [J]. FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [7] An Adaptive Square Root Unscented Kalman Filter Approach for State of Charge Estimation of Lithium-Ion Batteries
    Liu, Shulin
    Cui, Naxin
    Zhang, Chenghui
    [J]. ENERGIES, 2017, 10 (09):
  • [8] State of Charge Estimation of Lithium-Ion Battery Based on Improved Adaptive Unscented Kalman Filter
    Xing, Jie
    Wu, Peng
    [J]. SUSTAINABILITY, 2021, 13 (09)
  • [9] Adaptive state-of-charge estimation of lithium-ion batteries based on square-root unscented Kalman filter
    Chen, Liping
    Wu, Xiaobo
    Lopes, Antonio M.
    Yin, Lisheng
    Li, Penghua
    [J]. ENERGY, 2022, 252
  • [10] Fractional Extended and Unscented Kalman Filtering for State of Charge Estimation of Lithium-Ion Batteries
    Kupper, Martin
    Funk, Christopher
    Eckert, Marius
    Hohmann, Soeren
    [J]. 2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 3855 - 3862