RNA-MoIP: prediction of RNA secondary structure and local 3D motifs from sequence data

被引:14
|
作者
Yao, Jason [1 ]
Reinharz, Vladimir [2 ]
Major, Francois [3 ,4 ]
Waldispuhl, Jerome [1 ]
机构
[1] McGill Univ, Sch Comp Sci, 3480 Univ St, Montreal, PQ H3A 0E9, Canada
[2] Ben Gurion Univ Negev, Dept Comp Sci, IL-84105 Beer Sheva, Israel
[3] Univ Montreal, Inst Res Immunol & Canc, Montreal, PQ H3C 3J7, Canada
[4] Univ Montreal, Dept Comp Sci & Operat Res, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院; 美国国家卫生研究院;
关键词
TERTIARY STRUCTURES;
D O I
10.1093/nar/gkx429
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA structures are hierarchically organized. The secondary structure is articulated around sophisticated local three-dimensional (3D) motifs shaping the full 3D architecture of the molecule. Recent contributions have identified and organized recurrent local 3D motifs, but applications of this knowledge for predictive purposes is still in its infancy. We recently developed a computational framework, named RNA-MoIP, to reconcile RNA secondary structure and local 3D motif information available in databases. In this paper, we introduce a web service using our software for predicting RNA hybrid 2D-3D structures from sequence data only. Optionally, it can be used for (i) local 3D motif prediction or (ii) the refinement of user-defined secondary structures. Importantly, our web server automatically generates a script for the MC-Sym software, which can be immediately used to quickly predict all-atom RNA 3D models. The web server is available at http://rnamoip.cs.mcgill.ca.
引用
收藏
页码:W440 / W444
页数:5
相关论文
共 50 条
  • [31] trRosettaRNA: automated prediction of RNA 3D structure with transformer network
    Wenkai Wang
    Chenjie Feng
    Renmin Han
    Ziyi Wang
    Lisha Ye
    Zongyang Du
    Hong Wei
    Fa Zhang
    Zhenling Peng
    Jianyi Yang
    [J]. Nature Communications, 14
  • [32] trRosettaRNA: automated prediction of RNA 3D structure with transformer network
    Wang, Wenkai
    Feng, Chenjie
    Han, Renmin
    Wang, Ziyi
    Ye, Lisha
    Du, Zongyang
    Wei, Hong
    Zhang, Fa
    Peng, Zhenling
    Yang, Jianyi
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [33] Progress toward accurate 3D structure prediction of RNA.
    SantaLucia, J
    Saro, P
    Aduri, R
    Matta, V
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U912 - U912
  • [34] Predicting 3D RNA structure from the nucleotide sequence using Euclidean neural networks
    Sha, Congzhou M.
    Wang, Jian
    Dokholyan, Nikolay V.
    [J]. BIOPHYSICAL JOURNAL, 2024, 123 (17) : 2671 - 2681
  • [35] Structural 3D Domain Reconstruction of the RNA Genome from Viruses with Secondary Structure Models
    Poblete, Simon
    Guzman, Horacio V.
    [J]. VIRUSES-BASEL, 2021, 13 (08):
  • [36] The RNA 3D Motif Atlas: Computational methods for extraction, organization and evaluation of RNA motifs
    Parlea, Lorena G.
    Sweeney, Blake A.
    Hosseini-Asanjan, Maryam
    Zirbel, Craig L.
    Leontis, Neocles B.
    [J]. METHODS, 2016, 103 : 99 - 119
  • [37] Integrating Chemical Footprinting Data into RNA Secondary Structure Prediction
    Zarringhalam, Kourosh
    Meyer, Michelle M.
    Dotu, Ivan
    Chuang, Jeffrey H.
    Clote, Peter
    [J]. PLOS ONE, 2012, 7 (10):
  • [38] Improving Data Locality of RNA Secondary Structure Prediction Code
    Palkowski, Marek
    Bielecki, Wlodzimierz
    Skotnicki, Piotr
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2017, PT I, 2017, 10245 : 690 - 699
  • [39] RNA structure determination: From 2D to 3D
    Deng, Jie
    Fang, Xianyang
    Huang, Lin
    Li, Shanshan
    Xu, Lilei
    Ye, Keqiong
    Zhang, Jinsong
    Zhang, Kaiming
    Zhang, Qiangfeng Cliff
    [J]. FUNDAMENTAL RESEARCH, 2023, 3 (05): : 727 - 737
  • [40] Vfold-Pipeline: a web server for RNA 3D structure prediction from sequences
    Li, Jun
    Zhang, Sicheng
    Zhang, Dong
    Chen, Shi-Jie
    [J]. BIOINFORMATICS, 2022, 38 (16) : 4042 - 4043