Feature engineering strategies for credit card fraud detection

被引:171
|
作者
Bahnsen, Alejandro Correa [1 ]
Aouada, Djamila [1 ]
Stojanovic, Aleksandar [1 ]
Ottersten, Bjoern [1 ]
机构
[1] Univ Luxembourg, Interdisciplinary Ctr Secur Reliabil & Trust, Luxembourg, Luxembourg
关键词
Cost-sensitive learning; Fraud detection; Preprocessing; Von Mises distribution; TRANSACTION AGGREGATION;
D O I
10.1016/j.eswa.2015.12.030
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Every year billions of Euros are lost worldwide due to credit card fraud. Thus, forcing financial institutions to continuously improve their fraud detection systems. In recent years, several studies have proposed the use of machine learning and data mining techniques to address this problem. However, most studies used some sort of misclassification measure to evaluate the different solutions, and do not take into account the actual financial costs associated with the fraud detection process. Moreover, when constructing a credit card fraud detection model, it is very important how to extract the right features from the transactional data. This is usually done by aggregating the transactions in order to observe the spending behavioral patterns of the customers. In this paper we expand the transaction aggregation strategy, and propose to create a new set of features based on analyzing the periodic behavior of the time of a transaction using the von Mises distribution. Then, using a real credit card fraud dataset provided by a large European card processing company, we compare state-of-the-art credit card fraud detection models, and evaluate how the different sets of features have an impact on the results. By including the proposed periodic features into the methods, the results show an average increase in savings of 13%. (C) 2016 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:134 / 142
页数:9
相关论文
共 50 条
  • [31] A Novel Approach for Credit Card Fraud Detection
    Agrawal, Ayushi
    Kumar, Shiv
    Mishra, Amit Kumar
    2015 2ND INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2015, : 8 - 11
  • [32] Enhancing Credit Card Fraud Detection Through a Novel Ensemble Feature Selection Technique
    Wang, Huanjing
    Liang, Qianxin
    Hancock, John T., III
    Khoshgoftaar, Taghi M.
    2023 IEEE 24TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE, IRI, 2023, : 121 - 126
  • [33] A Machine Learning Method with Hybrid Feature Selection for Improved Credit Card Fraud Detection
    Mienye, Ibomoiye Domor
    Sun, Yanxia
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [34] A Transformer-based Model Integrated with Feature Selection for Credit Card Fraud Detection
    Yuan, Miao
    PROCEEDINGS OF 2022 7TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING TECHNOLOGIES, ICMLT 2022, 2022, : 185 - 190
  • [35] Credit card fraud
    Walsh, FJ
    PHOTONICS SPECTRA, 1997, 31 (03) : 12 - 12
  • [36] Fraud Shield: Credit Card Fraud Detection with Ensemble and Deep Learning
    Menon, Pranav Prakash
    Sachdeva, Amit
    Gayathn, V. M.
    2024 4TH INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND SOCIAL NETWORKING, ICPCSN 2024, 2024, : 224 - 230
  • [37] Application of classification models on credit card fraud detection
    Shen, Aihua
    Tong, Rencheng
    Deng, Yaochen
    2007 INTERNATIONAL CONFERENCE ON SERVICE SYSTEMS AND SERVICE MANAGEMENT, VOLS 1-3, 2007, : 465 - +
  • [38] Neural data mining for credit card fraud detection
    Guo, Tao
    Li, Gui-Yang
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 3630 - 3634
  • [39] Representation Learning in Graphs for Credit Card Fraud Detection
    Van Belle, Rafael
    Mitrovic, Sandra
    De Weerdt, Jochen
    MINING DATA FOR FINANCIAL APPLICATIONS, 2020, 11985 : 32 - 46
  • [40] Credit Card Fraud Detection Using Capsule Network
    Wang, Shuo
    Liu, Guanjun
    Li, Zhenchuan
    Xuan, Shiyang
    Yan, Chungang
    Jiang, Changjun
    2018 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2018, : 3679 - 3684