Enhancing Credit Card Fraud Detection Through a Novel Ensemble Feature Selection Technique

被引:4
|
作者
Wang, Huanjing [1 ]
Liang, Qianxin [2 ]
Hancock, John T., III [2 ]
Khoshgoftaar, Taghi M. [2 ]
机构
[1] Western Kentucky Univ, Bowling Green, KY 42101 USA
[2] Florida Atlantic Univ, Boca Raton, FL USA
关键词
Ensemble Supervised Feature Selection; Ensemble Threshold-Based Feature Selection; Credit Card Fraud; Highly Class Imbalance; ALGORITHMS; MACHINE;
D O I
10.1109/IRI58017.2023.00028
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Identifying fraudulent activities in credit card transactions is an inherent component of financial computing. The focus of our research is on the Credit Card Fraud Detection Dataset, which is widely used due to its authentic transaction data. In numerous machine learning applications, feature selection has become a crucial step. To improve the chance of discovering the globally optimal feature set, we employ ensembles of feature ranking methods. These ensemble methods merge multiple feature ranking lists through a median approach. We conduct a comprehensive empirical study that examines two different ensembles of feature ranking techniques, including an ensemble of twelve threshold-based feature selection (TBFS) techniques and an ensemble of five supervised feature selection (SFS) techniques. Additionally, we present results where all features are used. We construct classification models using two Decision Tree-based classifiers, CatBoost and XGBoost, and evaluate them using two different performance metrics, the Area Under the Receiver Operating Characteristic Curve (AUC) and the Area under the Precision-Recall Curve (AUPRC). Since AUPRC provides a more accurate representation of the number of false positives, especially for highly imbalanced datasets, evaluating models for AUPRC is a wise choice. The experimental results demonstrate that the ensemble of SFS and all features performs similarly or better than the ensemble of TBFS. Moreover, we find that XGBoost outperforms CatBoost in terms of AUPRC.
引用
收藏
页码:121 / 126
页数:6
相关论文
共 50 条
  • [1] The Effect of Feature Selection on Credit Card Fraud Detection Success
    Bayhan, Ensar
    Yavuz, A. Gokhan
    Guvensan, M. Amac
    Karsligil, M. Elif
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [2] Enhancing Credit Card Fraud Detection: An Ensemble Machine Learning Approach
    Khalid, Abdul Rehman
    Owoh, Nsikak
    Uthmani, Omair
    Ashawa, Moses
    Osamor, Jude
    Adejoh, John
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (01)
  • [3] Novel Ensemble Algorithm for Fraud Detection in Credit Card Transactions
    de Souza, Daniel Henrique Miguel
    Bordin Junior, Claudio Jose
    REVISTA TECNOLOGIA E SOCIEDADE, 2023, 19 (56): : 128 - 145
  • [4] A stacking ensemble for credit card fraud detection using SMOTE technique
    Kurien, Kaithekuzhical Leena
    Chikkamannur, Ajeet A.
    International Journal of Engineering Systems Modelling and Simulation, 2024, 15 (06) : 284 - 290
  • [5] Ensemble Learning for Credit Card Fraud Detection
    Sohony, Ishan
    Pratap, Rameshwar
    Nambiar, Ullas
    PROCEEDINGS OF THE ACM INDIA JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MANAGEMENT OF DATA (CODS-COMAD'18), 2018, : 289 - 294
  • [6] Ensemble Method for Credit Card Fraud Detection
    Wang, Rui
    Liu, Guanjun
    2021 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT AUTONOMOUS SYSTEMS (ICOIAS 2021), 2021, : 246 - 252
  • [7] A Neural Network Ensemble With Feature Engineering for Improved Credit Card Fraud Detection
    Esenogho, Ebenezer
    Mienye, Ibomoiye Domor
    Swart, Theo G.
    Aruleba, Kehinde
    Obaido, George
    IEEE ACCESS, 2022, 10 : 16400 - 16407
  • [8] Adaptive Credit Card Fraud Detection Techniques Based on Feature Selection Method
    Singh, Ajeet
    Jain, Anurag
    ADVANCES IN COMPUTER COMMUNICATION AND COMPUTATIONAL SCIENCES, IC4S 2018, 2019, 924 : 167 - 178
  • [9] Fraud Feature Boosting Mechanism and Spiral Oversampling Balancing Technique for Credit Card Fraud Detection
    Ni, Lina
    Li, Jufeng
    Xu, Huixin
    Wang, Xiangbo
    Zhang, Jinquan
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (02) : 1615 - 1630
  • [10] Fraud Shield: Credit Card Fraud Detection with Ensemble and Deep Learning
    Menon, Pranav Prakash
    Sachdeva, Amit
    Gayathn, V. M.
    2024 4TH INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND SOCIAL NETWORKING, ICPCSN 2024, 2024, : 224 - 230