Latent class based multiple imputation approach for missing categorical data

被引:28
|
作者
Gebregziabher, Mulugeta [1 ]
DeSantis, Stacia M. [1 ]
机构
[1] Med Univ S Carolina, Dept Med, Div Biostat & Epidemiol, Charleston, SC 29425 USA
关键词
Bias; Case-control data; Latent class; Missing data; Multiple imputation;
D O I
10.1016/j.jspi.2010.04.020
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we propose a latent class based multiple imputation approach for analyzing missing categorical covariate data in a highly stratified data model. In this approach, we impute the missing data assuming a latent class imputation model and we use likelihood methods to analyze the imputed data. Via extensive simulations, we study its statistical properties and make comparisons with complete case analysis, multiple imputation, saturated log-linear multiple imputation and the Expectation-Maximization approach under seven missing data mechanisms (including missing completely at random, missing at random and not missing at random). These methods are compared with respect to bias, asymptotic standard error, type I error, and 95% coverage probabilities of parameter estimates. Simulations show that, under many missingness scenarios, latent class multiple imputation performs favorably when jointly considering these criteria. A data example from a matched case-control study of the association between multiple myeloma and polymorphisms of the Inter-Leukin 6 genes is considered. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3252 / 3262
页数:11
相关论文
共 50 条
  • [31] Multiple imputation: dealing with missing data
    de Goeij, Moniek C. M.
    van Diepen, Merel
    Jager, Kitty J.
    Tripepi, Giovanni
    Zoccali, Carmine
    Dekker, Friedo W.
    [J]. NEPHROLOGY DIALYSIS TRANSPLANTATION, 2013, 28 (10) : 2415 - 2420
  • [32] Multiple imputation for nonignorable missing data
    Im, Jongho
    Kim, Soeun
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2017, 46 (04) : 583 - 592
  • [33] Multiple imputation for nonignorable missing data
    Jongho Im
    Soeun Kim
    [J]. Journal of the Korean Statistical Society, 2017, 46 : 583 - 592
  • [34] A Bayesian multiple imputation approach to bivariate functional data with missing components
    Jang, Jeong Hoon
    Manatunga, Amita K.
    Chang, Changgee
    Long, Qi
    [J]. STATISTICS IN MEDICINE, 2021, 40 (22) : 4772 - 4793
  • [35] A Probabilistic Approach for Missing Data Imputation
    Arefin, Muhammed Nazmul
    Masum, Abdul Kadar Muhammad
    [J]. COMPLEXITY, 2024, 2024
  • [36] Tackling UCR's missing data problem: A multiple imputation approach
    DeLang, Mason
    Taheri, Sema A.
    Hutchison, Robert
    Hawke, Nathan
    [J]. JOURNAL OF CRIMINAL JUSTICE, 2022, 79
  • [37] Missing values in longitudinal dietary data: A multiple imputation approach based on a fully conditional specification
    Nevalainen, Jaakko
    Kenward, Michael G.
    Virtanen, Suvi A.
    [J]. STATISTICS IN MEDICINE, 2009, 28 (29) : 3657 - 3669
  • [38] A Graph-Based Approach for Missing Sensor Data Imputation
    Jiang, Xiao
    Tian, Zean
    Li, Kenli
    [J]. IEEE SENSORS JOURNAL, 2021, 21 (20) : 23133 - 23144
  • [39] Handling Missing Data in Presence of Categorical Variables: a New Imputation Procedure
    Ferrari, Pier Alda
    Barbiero, Alessandro
    Manzi, Giancarlo
    [J]. NEW PERSPECTIVES IN STATISTICAL MODELING AND DATA ANALYSIS, 2011, : 473 - 480
  • [40] An Empirical Comparison of Multiple Imputation Methods for Categorical Data
    Akande, Olanrewaju
    Li, Fan
    Reiter, Jerome
    [J]. AMERICAN STATISTICIAN, 2017, 71 (02): : 162 - 170