Affirming a conjecture of Erdos and Renyi we prove that for any (real number) c(1) > 0 for some c(2) > 0, if a graph G has no c(1) (log n) nodes on which the graph is complete or edgeless (i.e., G exemplifies \G\ negated right arrow (c(1) log n)(2)(2)), then G has at least 2(c2n)non-isomorphic (induced) subgraphs. (C) 1998 Academic Press.
机构:
Univ Paris 07, Math, Case 7012, F-75205 Paris 13, FranceUniv Paris 07, Math, Case 7012, F-75205 Paris 13, France
Comets, F.
Gallesco, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Campinas UNICAMP, Inst Math Stat & Sci Computat, Dept Stat, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, BrazilUniv Paris 07, Math, Case 7012, F-75205 Paris 13, France
Gallesco, C.
Popov, S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Campinas UNICAMP, Inst Math Stat & Sci Computat, Dept Stat, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, BrazilUniv Paris 07, Math, Case 7012, F-75205 Paris 13, France
Popov, S.
Vachkovskaia, M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Campinas UNICAMP, Inst Math Stat & Sci Computat, Dept Stat, Rua Sergio Buarque de Holanda 651, BR-13083859 Campinas, SP, BrazilUniv Paris 07, Math, Case 7012, F-75205 Paris 13, France