A further generalization of Aczel's inequality and Popoviciu's inequality

被引:0
|
作者
Wu, Shanhe [1 ]
机构
[1] Longyan Coll, Dept Math, Fujian 364012, Peoples R China
来源
关键词
Aczel's inequality; Popoviciu's inequality; generalized Holder's inequality; Bernoulli's inequality; generalization; sharpen;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new generalization of Aczel's inequality is established, which contains as special case a sharpened version of Popoviciu's inequality: [GRAPHICS] where p, q, a(i), b(i) (i = 1, 2,..., n) are positive numbers, p(-1)+q(-1)=1, a(1)(p)-Sigma(n)(i=2) a(i)(p) > 0 and b(1)(q) - Sigma(n)(i=2) b(i)(q) > 0 Moreover, an integral inequality of Aczel-Popoviciu type is given.
引用
收藏
页码:565 / 573
页数:9
相关论文
共 50 条
  • [41] STEFFENSEN'S GENERALIZATION OF CEBYSEV INEQUALITY
    Awan, K. M.
    Pecaric, J.
    Rehman, Atiq Ur
    Journal of Mathematical Inequalities, 2015, 9 (01): : 155 - 163
  • [42] A Generalization Of Refined Young's Inequality
    Ighachane, Mohamed Amine
    Akkouchi, Mohamed
    APPLIED MATHEMATICS E-NOTES, 2022, 22 : 731 - 740
  • [43] A GENERALIZATION OF JORDAN'S INEQUALITY AND AN APPLICATION
    Huo, Zhen-Hong
    Niu, Da-Wei
    Cao, Jian
    Qi, Feng
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (01): : 53 - 61
  • [44] On sharpening and generalization of Rivlin's inequality
    Kumar, Prasanna
    Milovanovic, Gradimir, V
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (04) : 1436 - 1445
  • [45] REMARKS ON A GENERALIZATION OF BERNSTEIN,S INEQUALITY
    PLESNIAK, W
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (19): : 1211 - 1213
  • [46] A GENERALIZATION OF THE HILBERT'S TYPE INEQUALITY
    Xi, Gaowen
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1501 - 1510
  • [47] Generalization of Hilbert's integral inequality
    Brnetic, I
    Pecaric, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (02): : 199 - 205
  • [48] A NEW GENERALIZATION OF NESBITT'S INEQUALITY
    Batinetu-Giurgiu, Dumitru M.
    Stanciu, Neculai
    JOURNAL OF SCIENCE AND ARTS, 2013, (03): : 255 - 260
  • [49] About a generalization of Bell's inequality
    González-Robles, VM
    FOUNDATIONS OF PHYSICS, 2003, 33 (05) : 839 - 853
  • [50] A FURTHER GENERALIZATION OF HARDY-HILBERT'S INTEGRAL INEQUALITY WITH PARAMETER AND APPLICATIONS
    He, L.
    Dragomir, S. S.
    Yang, Q.
    JOURNAL OF APPLIED ANALYSIS, 2006, 12 (01) : 59 - 70