A further generalization of Aczel's inequality and Popoviciu's inequality

被引:0
|
作者
Wu, Shanhe [1 ]
机构
[1] Longyan Coll, Dept Math, Fujian 364012, Peoples R China
来源
关键词
Aczel's inequality; Popoviciu's inequality; generalized Holder's inequality; Bernoulli's inequality; generalization; sharpen;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new generalization of Aczel's inequality is established, which contains as special case a sharpened version of Popoviciu's inequality: [GRAPHICS] where p, q, a(i), b(i) (i = 1, 2,..., n) are positive numbers, p(-1)+q(-1)=1, a(1)(p)-Sigma(n)(i=2) a(i)(p) > 0 and b(1)(q) - Sigma(n)(i=2) b(i)(q) > 0 Moreover, an integral inequality of Aczel-Popoviciu type is given.
引用
收藏
页码:565 / 573
页数:9
相关论文
共 50 条
  • [21] A GENERALIZATION OF BERNOULLI'S INEQUALITY
    De Carli, Laura
    Hudson, Steve M.
    MATEMATICHE, 2010, 65 (01): : 109 - 117
  • [22] On the generalization of Hormander's inequality
    Mughetti, M
    Nicola, F
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2005, 30 (4-6) : 509 - 537
  • [23] A generalization of Markov's inequality
    Eisenberg, B
    Ghosh, BK
    STATISTICS & PROBABILITY LETTERS, 2001, 53 (01) : 59 - 65
  • [24] Generalization of a Pohst's inequality
    Battistoni, Francesco
    Molteni, Giuseppe
    JOURNAL OF NUMBER THEORY, 2021, 228 : 73 - 86
  • [25] GENERALIZATION OF LEVINSON'S INEQUALITY
    Baloch, Imran Abbas
    Pecaric, Josip
    Praljak, Marjan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (02): : 571 - 586
  • [26] A generalization of Fisher's inequality
    Snevily, HS
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1999, 85 (01) : 120 - 125
  • [27] A Generalization of Bonse's Inequality
    Farhadian, Reza
    Ponomarenko, Vadim
    AMERICAN MATHEMATICAL MONTHLY, 2024,
  • [28] A GENERALIZATION OF HILBERT'S INEQUALITY
    Gao, Peng
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (02): : 407 - 418
  • [29] A GENERALIZATION OF MUIRHEAD'S INEQUALITY
    Paris, J. B.
    Vencovska, A.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2009, 3 (02): : 181 - 187
  • [30] A Generalization of Leuenberger's Inequality
    Yegan, Mohammad Reza
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (01): : 88 - 89