On Lifting Integer Variables in Minimal Inequalities

被引:0
|
作者
Basu, Amitabh [1 ]
Campelo, Manoel [2 ]
Conforti, Michele [3 ]
Cornuejols, Gerard [1 ,4 ]
Zambelli, Giacomo [3 ]
机构
[1] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15213 USA
[2] Univ Fed Ceara, Dept Estat Matemat Aplicada, Ceara, Brazil
[3] Univ Padua, Dipartimento Matemat Pura Applicata, I-35121 Padua, Italy
[4] Univ Marseille, Fac Sci Luminy, LIF, Marseille, France
基金
美国安德鲁·梅隆基金会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper contributes to the theory of cutting planes for mixed integer linear programs (MILPs). Minimal valid inequalities are well understood for a relaxation of an MILP in tableau form where all the nonbasic variables are continuous. In this paper we study lifting functions for the nonbasic integer variables starting from such minimal valid inequalities. We characterize precisely when the lifted coefficient is equal to the coefficient of the corresponding continuous variable in every minimal lifting. The answer is a nonconvex region that can be obtained as the union of convex polyhedra.
引用
收藏
页码:85 / +
页数:3
相关论文
共 50 条
  • [1] NONUNIQUE LIFTING OF INTEGER VARIABLES IN MINIMAL INEQUALITIES
    Basu, Amitabh
    Dey, Santanu S.
    Paat, Joseph
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (02) : 755 - 783
  • [2] Unique lifting of integer variables in minimal inequalities
    Basu, Amitabh
    Campelo, Manoel
    Conforti, Michele
    Cornuejols, Gerard
    Zambelli, Giacomo
    [J]. MATHEMATICAL PROGRAMMING, 2013, 141 (1-2) : 561 - 576
  • [3] Unique lifting of integer variables in minimal inequalities
    Amitabh Basu
    Manoel Campêlo
    Michele Conforti
    Gérard Cornuéjols
    Giacomo Zambelli
    [J]. Mathematical Programming, 2013, 141 : 561 - 576
  • [4] Lifting integer variables in minimal inequalities corresponding to lattice-free triangles
    Dey, Santanu S.
    Wolsey, Laurence A.
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 2008, 5035 : 463 - +
  • [5] Lifting two-integer knapsack inequalities
    Agra, A.
    Constantino, M. F.
    [J]. MATHEMATICAL PROGRAMMING, 2007, 109 (01) : 115 - 154
  • [6] Lifting two-integer knapsack inequalities
    A. Agra
    M.F. Constantino
    [J]. Mathematical Programming, 2007, 109 : 115 - 154
  • [7] MINIMAL INEQUALITIES FOR MIXED INTEGER PROGRAMS
    JEROSLOW, RG
    [J]. OPERATIONS RESEARCH, 1975, 23 : B389 - B389
  • [8] Minimal Valid Inequalities for Integer Constraints
    Borozan, Valentin
    Cornuejols, Gerard
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2009, 34 (03) : 538 - 546
  • [9] MINIMAL INEQUALITIES FOR AN INFINITE RELAXATION OF INTEGER PROGRAMS
    Basu, Amitabh
    Conforti, Michele
    Cornuejols, Gerard
    Zambelli, Giacomo
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (01) : 158 - 168
  • [10] MINIMAL INEQUALITIES FOR MIXED-INTEGER PROBLEMS
    BLAIR, CE
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (04): : A470 - A471