Lifting two-integer knapsack inequalities

被引:0
|
作者
A. Agra
M.F. Constantino
机构
[1] University of Aveiro,Department of Mathematics
[2] Campus Universitário de Santiago,DEIO and CIO
[3] University of Lisbon,undefined
来源
Mathematical Programming | 2007年 / 109卷
关键词
Extreme Point; Knapsack Problem; Valid Inequality; Integer Point; Fibonacci Number;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we discuss the derivation of strong valid inequalities for (mixed) integer knapsack sets based on lifting of valid inequalities for basic knapsack sets with two integer variables (and one continuous variable). The basic polyhedra can be described in polynomial time. We use superadditive valid lifting functions in order to obtain sequence independent lifting. Most of these superadditive functions and valid inequalities are not obtained in polynomial time.
引用
收藏
页码:115 / 154
页数:39
相关论文
共 50 条
  • [1] Lifting two-integer knapsack inequalities
    Agra, A.
    Constantino, M. F.
    [J]. MATHEMATICAL PROGRAMMING, 2007, 109 (01) : 115 - 154
  • [2] Lifting the knapsack cover inequalities for the knapsack polytope
    Letchford, Adam N.
    Souli, Georgia
    [J]. OPERATIONS RESEARCH LETTERS, 2020, 48 (05) : 607 - 611
  • [3] Lifting for the integer knapsack cover polyhedron
    Chen, Wei-Kun
    Chen, Liang
    Dai, Yu-Hong
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2023, 86 (01) : 205 - 249
  • [4] Lifting for the integer knapsack cover polyhedron
    Wei-Kun Chen
    Liang Chen
    Yu-Hong Dai
    [J]. Journal of Global Optimization, 2023, 86 : 205 - 249
  • [5] On Lifting Integer Variables in Minimal Inequalities
    Basu, Amitabh
    Campelo, Manoel
    Conforti, Michele
    Cornuejols, Gerard
    Zambelli, Giacomo
    [J]. INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2010, 6080 : 85 - +
  • [6] On the complexity of sequentially lifting cover inequalities for the knapsack polytope
    Chen, Wei-Kun
    Dai, Yu-Hong
    [J]. SCIENCE CHINA-MATHEMATICS, 2021, 64 (01) : 211 - 220
  • [7] Lifting valid inequalities for the precedence constrained knapsack problem
    van de Leensel, RLMJ
    van Hoesel, CPM
    van de Klundert, JJ
    [J]. MATHEMATICAL PROGRAMMING, 1999, 86 (01) : 161 - 185
  • [8] On the complexity of sequentially lifting cover inequalities for the knapsack polytope
    Wei-Kun Chen
    Yu-Hong Dai
    [J]. Science China Mathematics, 2021, 64 : 211 - 220
  • [9] On the complexity of sequentially lifting cover inequalities for the knapsack polytope
    Wei-Kun Chen
    Yu-Hong Dai
    [J]. Science China Mathematics, 2021, 64 (01) : 211 - 220
  • [10] Lifting valid inequalities for the precedence constrained knapsack problem
    R.L.M.J. van de Leensel
    C.P.M. van Hoesel
    J.J. van de Klundert
    [J]. Mathematical Programming, 1999, 86 : 161 - 185