Unique lifting of integer variables in minimal inequalities

被引:14
|
作者
Basu, Amitabh [1 ]
Campelo, Manoel [2 ]
Conforti, Michele [3 ]
Cornuejols, Gerard [4 ]
Zambelli, Giacomo [5 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[2] Univ Fed Ceara, Dept Estat & Matemat Aplicada, Fortaleza, Ceara, Brazil
[3] Univ Padua, Dipartimento Matemat Pura & Appl, I-35121 Padua, Italy
[4] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15213 USA
[5] Univ London London Sch Econ & Polit Sci, London WC2A 2AE, England
基金
美国国家科学基金会;
关键词
Mixed integer linear programming; Minimal valid inequality; Lifting; PROGRAMS; CUTS;
D O I
10.1007/s10107-012-0560-9
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper contributes to the theory of cutting planes for mixed integer linear programs (MILPs). Minimal valid inequalities are well understood for a relaxation of an MILP in tableau form where all the nonbasic variables are continuous; they are derived using the gauge function of maximal lattice-free convex sets. In this paper we study lifting functions for the nonbasic integer variables starting from such minimal valid inequalities. We characterize precisely when the lifted coefficient is equal to the coefficient of the corresponding continuous variable in every minimal lifting (This result first appeared in the proceedings of IPCO 2010). The answer is a nonconvex region that can be obtained as a finite union of convex polyhedra. We then establish a necessary and sufficient condition for the uniqueness of the lifting function.
引用
下载
收藏
页码:561 / 576
页数:16
相关论文
共 50 条
  • [1] Unique lifting of integer variables in minimal inequalities
    Amitabh Basu
    Manoel Campêlo
    Michele Conforti
    Gérard Cornuéjols
    Giacomo Zambelli
    Mathematical Programming, 2013, 141 : 561 - 576
  • [2] On Lifting Integer Variables in Minimal Inequalities
    Basu, Amitabh
    Campelo, Manoel
    Conforti, Michele
    Cornuejols, Gerard
    Zambelli, Giacomo
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, PROCEEDINGS, 2010, 6080 : 85 - +
  • [3] NONUNIQUE LIFTING OF INTEGER VARIABLES IN MINIMAL INEQUALITIES
    Basu, Amitabh
    Dey, Santanu S.
    Paat, Joseph
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (02) : 755 - 783
  • [4] Lifting integer variables in minimal inequalities corresponding to lattice-free triangles
    Dey, Santanu S.
    Wolsey, Laurence A.
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, 2008, 5035 : 463 - +
  • [5] Lifting two-integer knapsack inequalities
    Agra, A.
    Constantino, M. F.
    MATHEMATICAL PROGRAMMING, 2007, 109 (01) : 115 - 154
  • [6] Lifting two-integer knapsack inequalities
    A. Agra
    M.F. Constantino
    Mathematical Programming, 2007, 109 : 115 - 154
  • [7] MINIMAL INEQUALITIES FOR MIXED INTEGER PROGRAMS
    JEROSLOW, RG
    OPERATIONS RESEARCH, 1975, 23 : B389 - B389
  • [8] Minimal Valid Inequalities for Integer Constraints
    Borozan, Valentin
    Cornuejols, Gerard
    MATHEMATICS OF OPERATIONS RESEARCH, 2009, 34 (03) : 538 - 546
  • [9] MINIMAL INEQUALITIES FOR AN INFINITE RELAXATION OF INTEGER PROGRAMS
    Basu, Amitabh
    Conforti, Michele
    Cornuejols, Gerard
    Zambelli, Giacomo
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2010, 24 (01) : 158 - 168
  • [10] MINIMAL INEQUALITIES FOR MIXED-INTEGER PROBLEMS
    BLAIR, CE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (04): : A470 - A471