Non-vanishing string tension of elastic membrane models

被引:11
|
作者
Koibuchi, H [1 ]
Kusano, N [1 ]
Nidaira, A [1 ]
Suzuki, K [1 ]
机构
[1] Ibaraki Coll Technol, Dept Mech & Syst Engn, Ibaraki 3128508, Japan
关键词
phase transition; string tension; elastic membranes;
D O I
10.1016/j.physleta.2004.09.064
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the grand canonical Monte Carlo simulations on spherical surfaces with two fixed vertices separated by the disc tance L. we find that a second-order phase transition changes to a first-order one when L is sufficiently large. We find that string tension sigma not equal 0 in the smooth phase while or sigma --> 0 in the wrinkled phase. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 50 条
  • [31] On the commutant of asymptotically non-vanishing contractions
    Geher, Gyoergy Pal
    Kerchy, Laszlo
    PERIODICA MATHEMATICA HUNGARICA, 2011, 63 (02) : 191 - 203
  • [32] Non-vanishing Fourier coefficients of Δk
    Tian, Peng
    Qin, Hourong
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 507 - 515
  • [33] Teleparallel gravity with non-vanishing curvature
    Wanas, M. I.
    Ammar, Samah A.
    Refaey, Shymaa A.
    CANADIAN JOURNAL OF PHYSICS, 2018, 96 (12) : 1373 - 1383
  • [34] On the non-vanishing of Jacobi Poincaré series
    Karam Deo Shankhadhar
    The Ramanujan Journal, 2017, 43 : 1 - 14
  • [35] Non-vanishing of Miyawaki type lifts
    Kim, Henry H.
    Yamauchi, Takuya
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2019, 89 (02): : 117 - 134
  • [36] A note on the effective non-vanishing conjecture
    Xie, Qihong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (01) : 61 - 63
  • [37] Non-vanishing higher derived limits
    Velickovic, Boban
    Vignati, Alessandro
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (07)
  • [38] THE NON-VANISHING OF THE DEVIATIONS OF A LOCAL RING
    HALPERIN, S
    COMMENTARII MATHEMATICI HELVETICI, 1987, 62 (04) : 646 - 653
  • [39] Non-vanishing of Miyawaki type lifts
    Henry H. Kim
    Takuya Yamauchi
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2019, 89 : 117 - 134
  • [40] Finite groups and non-vanishing elements
    Zhou, Feng
    Liu, Heguo
    Zhou, Fang
    ARCHIV DER MATHEMATIK, 2016, 107 (02) : 121 - 125