Non-vanishing string tension of elastic membrane models

被引:11
|
作者
Koibuchi, H [1 ]
Kusano, N [1 ]
Nidaira, A [1 ]
Suzuki, K [1 ]
机构
[1] Ibaraki Coll Technol, Dept Mech & Syst Engn, Ibaraki 3128508, Japan
关键词
phase transition; string tension; elastic membranes;
D O I
10.1016/j.physleta.2004.09.064
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the grand canonical Monte Carlo simulations on spherical surfaces with two fixed vertices separated by the disc tance L. we find that a second-order phase transition changes to a first-order one when L is sufficiently large. We find that string tension sigma not equal 0 in the smooth phase while or sigma --> 0 in the wrinkled phase. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 50 条
  • [21] Evidence for non-vanishing cosmological constant in non-SUSY superstring models
    Iengo, R
    Zhu, CJ
    JOURNAL OF HIGH ENERGY PHYSICS, 2000, (04):
  • [22] Non-vanishing elements in finite groups
    Brough, Julian
    JOURNAL OF ALGEBRA, 2016, 460 : 387 - 391
  • [23] Non-vanishing elements in finite groups
    Miyamoto, Masahiko
    JOURNAL OF ALGEBRA, 2012, 364 : 88 - 89
  • [24] On the commutant of asymptotically non-vanishing contractions
    György Pál Gehér
    László Kérchy
    Periodica Mathematica Hungarica, 2011, 63 : 191 - 203
  • [25] A NON-VANISHING RESULT ON THE SINGULARITY CATEGORY
    Chen, Xiao-Wu
    Li, Zhi-Wei
    Zhang, Xiaojin
    Zhao, Zhibing
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (09) : 3765 - 3776
  • [26] ON THE NON-VANISHING OF SHALIKA NEWVECTORS AT THE IDENTITY
    Grobner, Harald
    Matringe, Nadir
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2024, 28 (558): : 93 - 106
  • [27] Non-vanishing elements of finite groups
    Dolfi, Silvio
    Navarro, Gabriel
    Pacifici, Emanuele
    Sanus, Lucia
    Tiep, Pham Huu
    JOURNAL OF ALGEBRA, 2010, 323 (02) : 540 - 545
  • [28] Non-vanishing of Hilbert Poincare series
    Kumari, Moni
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (02) : 1476 - 1485
  • [29] Non-vanishing of periods of automorphic functions
    Reznikov, A
    FORUM MATHEMATICUM, 2001, 13 (04) : 485 - 493
  • [30] Finite groups and non-vanishing elements
    Feng Zhou
    Heguo Liu
    Fang Zhou
    Archiv der Mathematik, 2016, 107 : 121 - 125