共 50 条
High-κ dielectrics for advanced carbon-nanotube transistors and logic gates
被引:810
|作者:
Javey, A
Kim, H
Brink, M
Wang, Q
Ural, A
Guo, J
McIntyre, P
McEuen, P
Lundstrom, M
Dai, HJ
[1
]
机构:
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[3] Cornell Univ, Dept Phys, Ithaca, NY 14853 USA
[4] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
基金:
美国国家科学基金会;
关键词:
D O I:
10.1038/nmat769
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The integration of materials having a high dielectric constant (high-kappa) into carbon-nanotube transistors promises to push the performance limit for molecular electronics. Here, high-kappa (similar to25) zirconium oxide thin-films (similar to8 nm) are formed on top of individual single-walled carbon nanotubes by atomic-layer deposition and used as gate dielectrics for nanotube field-effect transistors. The p-type transistors exhibit subthreshold swings of S similar to 70 mV per decade, approaching the room-temperature theoretical limit for field-effect transistors. Key transistor performance parameters, transconductance and carrier mobility reach 6,000 S m(-1) (12 muS per tube) and 3,000 cm(2) V-1 s(-1) respectively. N-type field-effect transistors obtained by annealing the devices in hydrogen exhibit S similar to 90 mV per decade. High voltage gains of up to 60 are obtained for complementary nanotube-based inverters. The atomic-layer deposition process affords gate insulators with high capacitance while being chemically benign to nanotubes, a key to the integration of advanced dielectrics into molecular electronics.
引用
收藏
页码:241 / 246
页数:6
相关论文