On the preservers of maximally entangled states

被引:0
|
作者
Grossmann, Ben W. [1 ]
Woerdeman, Hugo J. [1 ]
机构
[1] Drexel Univ, Dept Math, 3141 Chestnut St, Philadelphia, PA 19104 USA
关键词
Linear preservers; Maximally entangled states; Projective space;
D O I
10.1016/j.laa.2019.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the linear maps that preserve maximally entangled states in L(X circle times Y) in the case where dim(X) divides dim(Y). (C) 2019 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:171 / 194
页数:24
相关论文
共 50 条
  • [41] Multiparticle singlet states cannot be maximally entangled for the bipartitions
    Bernards, Fabian
    Guehne, Otfried
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (01)
  • [42] A note on the Bloch representation of absolutely maximally entangled states
    Bo Li
    ShuHan Jiang
    Shao-Ming Fei
    XianQing Li-Jost
    Science China(Physics,Mechanics & Astronomy), 2018, (04) : 86 - 90
  • [43] Generation of Maximally Entangled States of Two Cavity Modes
    Saif, F.
    Abdel-Aty, M.
    Javed, M.
    Ul-Islam, R.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2007, 1 (03): : 323 - 332
  • [44] Local Hamiltonians for maximally multipartite-entangled states
    Facchi, P.
    Florio, G.
    Pascazio, S.
    Pepe, F.
    PHYSICAL REVIEW A, 2010, 82 (04):
  • [45] Local discrimination of maximally entangled states in canonical form
    Cao, HG
    Ying, MS
    PHYSICS LETTERS A, 2004, 333 (3-4) : 232 - 234
  • [46] A note on the Bloch representation of absolutely maximally entangled states
    Bo Li
    ShuHan Jiang
    Shao-Ming Fei
    XianQing Li-Jost
    Science China Physics, Mechanics & Astronomy, 2018, 61
  • [47] Cutting a Wire with Non-Maximally Entangled States
    Bechtold, Marvin
    Batten, Johanna
    Leyrnann, Frank
    Mandl, Alexander
    2024 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, IPDPSW 2024, 2024, : 1136 - 1145
  • [48] A note on the Bloch representation of absolutely maximally entangled states
    Li, Bo
    Jiang, ShuHan
    Fei, Shao-Ming
    Li-Jost, XianQing
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (04)
  • [49] Optimal verification and fidelity estimation of maximally entangled states
    Zhu, Huangjun
    Hayashi, Masahito
    PHYSICAL REVIEW A, 2019, 99 (05)
  • [50] Maximally entangled states for qubit-qutrit systems
    Jami, S
    Sarbishei, M
    INDIAN JOURNAL OF PHYSICS, 2005, 79 (02) : 167 - 170