On the preservers of maximally entangled states

被引:0
|
作者
Grossmann, Ben W. [1 ]
Woerdeman, Hugo J. [1 ]
机构
[1] Drexel Univ, Dept Math, 3141 Chestnut St, Philadelphia, PA 19104 USA
关键词
Linear preservers; Maximally entangled states; Projective space;
D O I
10.1016/j.laa.2019.09.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the linear maps that preserve maximally entangled states in L(X circle times Y) in the case where dim(X) divides dim(Y). (C) 2019 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:171 / 194
页数:24
相关论文
共 50 条
  • [21] Maximally entangled mixed states: Creation and concentration
    Peters, NA
    Altepeter, JB
    Branning, D
    Jeffrey, ER
    Wei, TC
    Kwiat, PG
    PHYSICAL REVIEW LETTERS, 2004, 92 (13) : 133601 - 1
  • [22] Maximally entangled states of a bimodal cavity field
    Napoli, A.
    Messina, A.
    Journal of Modern Optics, 2000, 47 (12 SPEC.) : 2105 - 2111
  • [23] Bohm's interpretation and maximally entangled states
    Durt, Thomas
    Pierseaux, Yves
    Physical Review A - Atomic, Molecular, and Optical Physics, 2002, 66 (05): : 1 - 052109
  • [24] Bell Inequalities Tailored to Maximally Entangled States
    Salavrakos, Alexia
    Augusiak, Remigiusz
    Tura, Jordi
    Wittek, Peter
    Acin, Antonio
    Pironio, Stefano
    PHYSICAL REVIEW LETTERS, 2017, 119 (04)
  • [25] Maximally entangled states in discrete and Gaussian regimes
    Youngrong Lim
    Jaewan Kim
    Soojoon Lee
    Kabgyun Jeong
    Quantum Information Processing, 2019, 18
  • [26] Quench dynamics of topological maximally entangled states
    Chung, Ming-Chiang
    Jhu, Yi-Hao
    Chen, Pochung
    Mou, Chung-Yu
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (28)
  • [27] Gaussian maximally multipartite-entangled states
    Facchi, Paolo
    Florio, Giuseppe
    Lupo, Cosmo
    Mancini, Stefano
    Pascazio, Saverio
    PHYSICAL REVIEW A, 2009, 80 (06):
  • [28] Multipartite maximally entangled states in symmetric scenarios
    Gonzalez-Guillen, Carlos E.
    PHYSICAL REVIEW A, 2012, 86 (02):
  • [29] Maximally entangled states of a bimodal cavity field
    Napoli, A
    Messina, A
    JOURNAL OF MODERN OPTICS, 2000, 47 (12) : 2105 - 2111
  • [30] Maximally entangled mixed states and the bell inequality
    Munro, W.J.
    Nemoto, K.
    HP Laboratories Technical Report, 2001, (66):