Saddle Solutions to Allen-Cahn Equations in Doubly Periodic Media
被引:7
|
作者:
Alessio, Francesca
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, ItalyUniv Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, Italy
Alessio, Francesca
[1
]
Gui, Changfeng
论文数: 0引用数: 0
h-index: 0
机构:
Hunan Univ, Inst Math, Changsha 410082, Hunan, Peoples R China
Univ Texas San Antonio, Dept Math, San Antonio, TX 78249 USAUniv Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, Italy
Gui, Changfeng
[2
,3
]
Montecchiari, Piero
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, ItalyUniv Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, Italy
Montecchiari, Piero
[1
]
机构:
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, Italy
[2] Hunan Univ, Inst Math, Changsha 410082, Hunan, Peoples R China
[3] Univ Texas San Antonio, Dept Math, San Antonio, TX 78249 USA
We consider a class of periodic Allen-Cahn equations (1) - Delta u(x,y) + a(x,y)W' (u(x, y)) = 0, (x,y) is an element of R-2, where a is an element of C(R-2) is an even, periodic, positive function representing a doubly periodic media, and W : R -> R. is a classical double well potential such as the Ginzburg-Landau potential W(s) = (s(2) - 1(2))(2). We show the existence and asymptotic behavior of a saddle solution on the entire plane, which has odd symmetry with respect to both axes, and even symmetry with respect to the line x = y. This result generalizes the classic result on saddle solutions of Allen-Cahn equation in a homogeneous medium.
机构:
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, CanadaUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
Chan, Hardy
Wei, Juncheng
论文数: 0引用数: 0
h-index: 0
机构:
Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R ChinaUniv British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
机构:
Politecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, Italy
Grasselli, Maurizio
Poiatti, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Politecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, ItalyPolitecn Milan, Dipartimento Matemat, Via E Bonardi 9, I-20133 Milan, Italy