Saddle Solutions to Allen-Cahn Equations in Doubly Periodic Media

被引:9
|
作者
Alessio, Francesca [1 ]
Gui, Changfeng [2 ,3 ]
Montecchiari, Piero [1 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche, I-60131 Ancona, Italy
[2] Hunan Univ, Inst Math, Changsha 410082, Hunan, Peoples R China
[3] Univ Texas San Antonio, Dept Math, San Antonio, TX 78249 USA
关键词
Heteroclinic solutions; saddle solutions; elliptic equations; variational methods; SHAPED SOLUTIONS; STABILITY;
D O I
10.1512/iumj.2016.65.5772
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of periodic Allen-Cahn equations (1) - Delta u(x,y) + a(x,y)W' (u(x, y)) = 0, (x,y) is an element of R-2, where a is an element of C(R-2) is an even, periodic, positive function representing a doubly periodic media, and W : R -> R. is a classical double well potential such as the Ginzburg-Landau potential W(s) = (s(2) - 1(2))(2). We show the existence and asymptotic behavior of a saddle solution on the entire plane, which has odd symmetry with respect to both axes, and even symmetry with respect to the line x = y. This result generalizes the classic result on saddle solutions of Allen-Cahn equation in a homogeneous medium.
引用
收藏
页码:199 / 221
页数:23
相关论文
共 50 条
  • [31] A reduced order method for Allen-Cahn equations
    Song, Huailing
    Jiang, Lijian
    Li, Qiuqi
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 292 : 213 - 229
  • [32] Effect of Space Dimensions on Equilibrium Solutions of Cahn-Hilliard and Conservative Allen-Cahn Equations
    Lee, Hyun Geun
    Yang, Junxiang
    Park, Jintae
    Kim, Junseok
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2020, 13 (03) : 644 - 664
  • [33] Time discretizations of anisotropic Allen-Cahn equations
    Graeser, Carsten
    Kornhuber, Ralf
    Sack, Uli
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2013, 33 (04) : 1226 - 1244
  • [34] Optimal control of anisotropic Allen-Cahn equations
    Blank, Luise
    Meisinger, Johannes
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2022, 28 : 673 - 706
  • [35] Second order convex splitting schemes for periodic nonlocal Cahn-Hilliard and Allen-Cahn equations
    Guan, Zhen
    Lowengrub, John S.
    Wang, Cheng
    Wise, Steven M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 277 : 48 - 71
  • [36] Existence of infinitely many stationary layered solutions in R2 for a class of periodic Allen-Cahn equations
    Alessio, F
    Jeanjean, L
    Montecchiari, P
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (7-8) : 1537 - 1574
  • [37] Some entire solutions of the Allen-Cahn equation
    Fukao, Y
    Morita, Y
    Ninomiya, H
    TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (01): : 15 - 32
  • [38] Symmetry of Entire Solutions to the Allen-Cahn Equation
    Gui, Changfeng
    Zhang, Fang
    ADVANCED NONLINEAR STUDIES, 2015, 15 (03) : 587 - 612
  • [39] The hyperbolic Allen-Cahn equation: exact solutions
    Nizovtseva, I. G.
    Galenko, P. K.
    Alexandrov, D. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (43)
  • [40] Infinite transition solutions for an Allen-Cahn equation
    Li, Wen-Long
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 245