Ultralow-Power Complementary Metal-Oxide-Semiconductor Inverters Constructed on Schottky Barrier Modified Nanowire Metal-Oxide-Semiconductor Field-Effect-Transistors

被引:0
|
作者
Ma, R. M.
Peng, R. M.
Wen, X. N.
Dai, L. [1 ]
Liu, C.
Sun, T.
Xu, W. J.
Qin, G. G.
机构
[1] Peking Univ, Sch Phys, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Integrated Circuit; Field-Effect-Transistors; Schottky Barrier; Nanowires; Doping; ELECTRICAL-PROPERTIES; SURFACE PASSIVATION; BUILDING-BLOCKS; GE NANOWIRES; PERFORMANCE; TRANSPORT; DEVICES; HETEROSTRUCTURES; ELECTRONICS; CIRCUITS;
D O I
10.1166/jnn.2010.2541
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We show that the threshold voltages of both n- and p-channel metal-oxide-semiconductor field-effect-transistors (MOSFETs) can be lowered to close to zero by adding extra Schottky contacts on top of nanowires (NWs). Novel complementary metal-oxide-semiconductor (CMOS) inverters are constructed on these Schottky barrier modified n- and p-channel NW MOSFETs. Based on the high performances of the modified n- and p-channel MOSFETs, especially the low threshold voltages, the as-fabricated CMOS inverters have low operating voltage, high voltage gain, and ultra-low static power dissipation.
引用
收藏
页码:6428 / 6431
页数:4
相关论文
共 50 条
  • [11] Impact of the channel thickness on the performance of Schottky barrier metal-oxide-semiconductor field-effect transistors
    Knoch, J
    Appenzeller, J
    [J]. APPLIED PHYSICS LETTERS, 2002, 81 (16) : 3082 - 3084
  • [12] Schottky Barrier Metal-Oxide-Semiconductor Field-Effect Transistors for Nano-Regime Applications
    Lee, Seongjae
    Jang, Moongyu
    Kim, Yarkyeon
    Jeon, Myungsim
    Park, Kyoungwan
    [J]. ELECTRONIC MATERIALS LETTERS, 2005, 1 (01) : 27 - 29
  • [13] Schottky-Barrier Metal-Oxide-Semiconductor Field-Effect Transistors as Resonant Tunneling Devices
    Toriyama, Shuichi
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2010, 49 (10) : 1042041 - 1042046
  • [14] Ambipolar Schottky barrier silicon-on-insulator metal-oxide-semiconductor transistors
    Lin, HC
    Wang, MF
    Lu, CY
    Huang, TY
    [J]. SOLID-STATE ELECTRONICS, 2003, 47 (02) : 247 - 251
  • [15] Comparison of nanoscale metal-oxide-semiconductor field effect transistors
    Li, YM
    Lee, JW
    Chou, HM
    [J]. SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES 2004, 2004, : 307 - 310
  • [17] METAL-OXIDE-SEMICONDUCTOR TRANSISTORS (MOS)
    CARNAUR, IS
    DRAGHICI, I
    [J]. STUDII SI CERCETARI DE FIZICA, 1972, 24 (06): : 741 - &
  • [18] High-k InGaAs metal-oxide-semiconductor field-effect-transistors with various barrier layer materials
    Xue, Fei
    Zhao, Han
    Chen, Yen-Ting
    Wang, Yanzhen
    Zhou, Fei
    Lee, Jack C.
    [J]. APPLIED PHYSICS LETTERS, 2011, 99 (03)
  • [19] Germanium Nanowire Metal-Oxide-Semiconductor Field-Effect Transistor Fabricated by Complementary-Metal-Oxide-Semiconductor-Compatible Process
    Peng, J. W.
    Singh, N.
    Lo, G. Q.
    Bosman, M.
    Ng, C. M.
    Lee, S. J.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (01) : 74 - 79
  • [20] New aspects of nanopotentiometry for complementary metal-oxide-semiconductor transistors
    Trenkler, T
    Stephenson, R
    Jansen, P
    Vandervorst, W
    Hellemans, L
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (01): : 586 - 594