Tumor model parameter estimation for therapy optimization using artificial neural networks

被引:2
|
作者
Puskas, Melania [1 ,2 ]
Drexler, Daniel Andras [1 ]
机构
[1] Obuda Univ, Res & Innovat Ctr, Physiol Res Ctr, Budapest, Hungary
[2] Eotvos Lorand Res Network ELKH, Inst Comp Sci & Control SZTAKI, Budapest, Hungary
基金
欧洲研究理事会;
关键词
D O I
10.1109/SMC52423.2021.9659073
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Therapy optimization and personalization in cancer treatment requires reliable mathematical models. A key issue in personalization is the identification of the model parameters. We employ artificial neural networks to identify the model parameters based on few measurements using a priori information about the range of the parameters. The trainig data are generated in silico on known parameter intervals, taking into consideration the experimental setup we use to validate our results. The estimated parameters can be used to track the change of the parameters and can also be used as initial guesses for identification algorithms using local search.
引用
下载
收藏
页码:1254 / 1259
页数:6
相关论文
共 50 条
  • [21] Improvement in parameter estimation of Pareto type II clutter using artificial neural networks
    C. Alioua
    A. Mezache
    F. Soltani
    Signal, Image and Video Processing, 2025, 19 (5)
  • [22] Globally optimal bounding ellipsoid algorithm for parameter estimation using artificial neural networks
    Sun, XF
    Fan, YZ
    Zhang, FZ
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2000, 31 (01) : 47 - 53
  • [23] ELECTRIC LOAD PATTERN CLASSIFICATION USING PARAMETER ESTIMATION, CLUSTERING AND ARTIFICIAL NEURAL NETWORKS
    Buitrago, Jaime
    Abdulaal, Ahmed
    Asfour, Shihab
    INTERNATIONAL JOURNAL OF POWER AND ENERGY SYSTEMS, 2015, 35 (04): : 167 - 174
  • [24] Stellar parameter estimation in O-type stars using artificial neural networks
    Flores, R. M.
    Corral, L. J.
    Fierro-Santillan, C. R.
    Navarro, S. G.
    ASTRONOMY AND COMPUTING, 2023, 45
  • [25] Small signal S-parameter estimation of BJTs using artificial neural networks
    Majid, I
    Nadeem, AE
    Azam, FE
    INMIC 2004: 8th International Multitopic Conference, Proceedings, 2004, : 669 - 673
  • [26] Parameter estimation using compensatory neural networks
    Sinha, M
    Kalra, PK
    Kumar, K
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2000, 25 (2): : 193 - 203
  • [27] Parameter estimation using compensatory neural networks
    M. Sinha
    P. K. Kalra
    K. Kumar
    Sadhana, 2000, 25 : 193 - 203
  • [28] Wave parameter estimation using neural networks
    Agrawal, JD
    Deo, MC
    MARINE STRUCTURES, 2004, 17 (07) : 536 - 550
  • [29] Using Generative Adversarial Networks and Parameter Optimization of Convolutional Neural Networks for Lung Tumor Classification
    Lin, Chun-Hui
    Lin, Cheng-Jian
    Li, Yu-Chi
    Wang, Shyh-Hau
    APPLIED SCIENCES-BASEL, 2021, 11 (02): : 1 - 17
  • [30] Parameter Inversion of Soil Hyperbolic Constitutive Model by Using Artificial Neural Networks
    Li, Shouju
    Shao, Longtan
    Sun, Wei
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL VI: MODELLING AND SIMULATION IN ARCHITECTURE, CIVIL ENGINEERING AND MATERIALS, 2008, : 47 - 53