Learning Concepts from Visual Scenes Using a Binary Probabilistic Model

被引:0
|
作者
Bouguila, Nizar [1 ]
Daoudi, Khalid [2 ]
机构
[1] Concordia Univ, CIISE, Montreal, PQ H3G 2W1, Canada
[2] Univ Toulouse 3, CNRS, IRIT, F-31062 Toulouse, France
基金
加拿大自然科学与工程研究理事会;
关键词
DIRICHLET MIXTURE MODEL; UNSUPERVISED SELECTION;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper analyzes the use of visual words., as low-level image features. for learning and categorizing images. We show that this problem can be reduced to a simultaneous weighting or appropriate features and detection of clusters in a binary feature space. A probabilistic model is then proposed to quantify the effectiveness of visual words when treated as binary feature,. In order to learn the model. we consider a maximum a posteriori (MAP) approach. Experimental results are presented to illustrate the feasibility and merits of our approach.
引用
收藏
页码:179 / +
页数:3
相关论文
共 50 条
  • [31] A GENERALIZED BINARY PROBABILISTIC INDEPENDENCE MODEL
    WONG, SKM
    YAO, YY
    JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, 1990, 41 (05): : 324 - 329
  • [32] Using animations and visual cueing to support learning of scientific concepts and processes
    Lin, Lijia
    Atkinson, Robert K.
    COMPUTERS & EDUCATION, 2011, 56 (03) : 650 - 658
  • [33] A MODEL FOR REPRESENTATION OF VISUAL CONCEPTS
    TUROVSKII, VV
    PERCEPTION, 1989, 18 (04) : 516 - 516
  • [34] Using Biologically-Inspired Visual Features To Model The Restorative Potential Of Scenes
    Mountstephens, James
    NEURAL INFORMATION PROCESSING, ICONIP 2014, PT III, 2014, 8836 : 194 - 201
  • [35] Using innate visual biases to guide face learning in natural scenes: a computational investigation
    Balas, Benjamin
    DEVELOPMENTAL SCIENCE, 2010, 13 (03) : 469 - 478
  • [36] Learning Visual Object Categories and Their Composition Based on a Probabilistic Latent Variable Model
    Atsumi, Masayasu
    NEURAL INFORMATION PROCESSING: THEORY AND ALGORITHMS, PT I, 2010, 6443 : 247 - 254
  • [37] MetaCOG: A Hierarchical Probabilistic Model for Learning Meta-Cognitive Visual Representations
    Berke, Marlene D.
    Azerbayev, Zhangir
    Belledonne, Mario
    Tavares, Zenna
    Jara-Ettinger, Julian
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2024, 244 : 349 - 359
  • [38] On learning visual concepts and DNF formulae
    Kushilevitz, E
    Roth, D
    MACHINE LEARNING, 1996, 24 (01) : 65 - 85
  • [39] Semantic visual simultaneous localization and mapping (SLAM) using deep learning for dynamic scenes
    Zhang, Xiao Ya
    Abd Rahman, Abdul Hadi
    Qamar, Faizan
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [40] Learning visual models of semantic concepts
    Naphade, MR
    Smith, JR
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS, 2003, : 531 - 534