Learning Concepts from Visual Scenes Using a Binary Probabilistic Model

被引:0
|
作者
Bouguila, Nizar [1 ]
Daoudi, Khalid [2 ]
机构
[1] Concordia Univ, CIISE, Montreal, PQ H3G 2W1, Canada
[2] Univ Toulouse 3, CNRS, IRIT, F-31062 Toulouse, France
基金
加拿大自然科学与工程研究理事会;
关键词
DIRICHLET MIXTURE MODEL; UNSUPERVISED SELECTION;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper analyzes the use of visual words., as low-level image features. for learning and categorizing images. We show that this problem can be reduced to a simultaneous weighting or appropriate features and detection of clusters in a binary feature space. A probabilistic model is then proposed to quantify the effectiveness of visual words when treated as binary feature,. In order to learn the model. we consider a maximum a posteriori (MAP) approach. Experimental results are presented to illustrate the feasibility and merits of our approach.
引用
收藏
页码:179 / +
页数:3
相关论文
共 50 条
  • [21] Probabilistic modeling of scenes using object frames
    Hao Su
    Adams Wei Yu
    Science China Information Sciences, 2015, 58 : 1 - 13
  • [22] Probabilistic principles in unsupervised learning of visual structure: human data and a model
    Edelman, S
    Hiles, BP
    Yang, HJ
    Intrator, N
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 19 - 26
  • [23] Probabilistic Learning of Visual Object Composition from Attended Segments
    Atsumi, Masayasu
    ADVANCES IN VISUAL COMPUTING, PT II, 2010, 6454 : 696 - 705
  • [24] Rapid learning in cortical coding of visual scenes
    Yao, Haishan
    Shi, Lei
    Han, Feng
    Gao, Hongfeng
    Dan, Yang
    NATURE NEUROSCIENCE, 2007, 10 (06) : 772 - 778
  • [25] Rapid learning in cortical coding of visual scenes
    Haishan Yao
    Lei Shi
    Feng Han
    Hongfeng Gao
    Yang Dan
    Nature Neuroscience, 2007, 10 : 772 - 778
  • [26] Learning to Localize Sound Source in Visual Scenes
    Senocak, Arda
    Oh, Tae-Hyun
    Kim, Junsik
    Yang, Ming-Hsuan
    Kweon, In So
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4358 - 4366
  • [27] Insights from Classifying Visual Concepts with Multiple Kernel Learning
    Binder, Alexander
    Nakajima, Shinichi
    Kloft, Marius
    Mueller, Christina
    Samek, Wojciech
    Brefeld, Ulf
    Mueller, Klaus-Robert
    Kawanabe, Motoaki
    PLOS ONE, 2012, 7 (08):
  • [28] AUTODIDACTIC LEARNING OF PROBABILISTIC CONCEPTS THROUGH GAMES
    Amit, Miriam
    Jan, Irma
    PME 30: PROCEEDINGS OF THE 30TH CONFERENCE OF THE INTERNATIONAL GROUP FOR THE PSYCHOLOGY OF MATHEMATICS EDUCATION, VOL 2, 2006, : 49 - 56
  • [29] Probabilistic visual learning for object representation
    Moghaddam, B
    Pentland, A
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) : 696 - 710
  • [30] Visual Analytics for Complex Concepts Using a Human Cognition Model
    Green, Tera Marie
    Ribarsky, William
    Fisher, Brian
    IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY 2008, PROCEEDINGS, 2008, : 91 - +