Learning Concepts from Visual Scenes Using a Binary Probabilistic Model

被引:0
|
作者
Bouguila, Nizar [1 ]
Daoudi, Khalid [2 ]
机构
[1] Concordia Univ, CIISE, Montreal, PQ H3G 2W1, Canada
[2] Univ Toulouse 3, CNRS, IRIT, F-31062 Toulouse, France
基金
加拿大自然科学与工程研究理事会;
关键词
DIRICHLET MIXTURE MODEL; UNSUPERVISED SELECTION;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper analyzes the use of visual words., as low-level image features. for learning and categorizing images. We show that this problem can be reduced to a simultaneous weighting or appropriate features and detection of clusters in a binary feature space. A probabilistic model is then proposed to quantify the effectiveness of visual words when treated as binary feature,. In order to learn the model. we consider a maximum a posteriori (MAP) approach. Experimental results are presented to illustrate the feasibility and merits of our approach.
引用
收藏
页码:179 / +
页数:3
相关论文
共 50 条
  • [1] Neural-Symbolic Predicate Invention: Learning Relational Concepts from Visual Scenes
    Sha, Jingyuan
    Shindo, Hikaru
    Kersting, Kristian
    Dhami, Devendra Singh
    NEURAL-SYMBOLIC LEARNING AND REASONING 2023, NESY 2023, 2023,
  • [2] A Probabilistic Framework for Visual Localization in Ambiguous Scenes
    Zangeneh, Fereidoon
    Bruns, Leonard
    Dekel, Amit
    Pieropan, Alessandro
    Jensfelti, Patric
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 3969 - 3975
  • [3] Visual attention in natural scenes: A probabilistic perspective
    Tatler, Ben
    Vincent, Ben
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2008, 43 (3-4) : 37 - 37
  • [4] From motion patterns to visual concepts for event analysis in dynamic scenes
    Xin, L
    Tan, TN
    COMPUTER VISION - ACCV 2006, PT I, 2006, 3851 : 826 - 835
  • [5] Associative reinforcement learning using linear probabilistic concepts
    Abe, N
    Long, PM
    MACHINE LEARNING, PROCEEDINGS, 1999, : 3 - 11
  • [6] Learning Physical Graph Representations from Visual Scenes
    Bear, Daniel M.
    Fan, Chaofei
    Mrowca, Damian
    Li, Yunzhu
    Alter, Seth
    Nayebi, Aran
    Schwartz, Jeremy
    Fei-Fei, Li
    Wu, Jiajun
    Tenenbaum, Joshua B.
    Yamins, Daniel L. K.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [7] An inherently interpretable deep learning model for local explanations using visual concepts
    Ullah, Mirza Ahsan
    Zia, Tehseen
    Kim, Jungeun
    Kadry, Seifedine
    PLOS ONE, 2024, 19 (10):
  • [8] Learning representations for visual scenes
    Sudderth, Erik B.
    IEEE INTELLIGENT SYSTEMS, 2008, 23 (03) : 18 - 18
  • [9] Learning abstract visual concepts via probabilistic program induction in a Language of Thought
    Overlan, Matthew C.
    Jacobs, Robert A.
    Piantadosi, Steven T.
    COGNITION, 2017, 168 : 320 - 334
  • [10] CONNECTIONISM AND THE LEARNING OF PROBABILISTIC CONCEPTS
    SHANKS, DR
    QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY SECTION A-HUMAN EXPERIMENTAL PSYCHOLOGY, 1990, 42 (02): : 209 - 237