A Gibbs sampling approach to independent factor analysis

被引:0
|
作者
Adenle, Omolabake A. [1 ]
Fitzgerald, William J. [1 ]
机构
[1] Univ Cambridge, Dept Engn, Signal Proc & Commun Lab, Cambridge CB2 1PZ, England
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
We present a Gibbs sampler for estimating parameters of the Independent Factor model. Independent Factor Analysis (IFA) is a generalization of Mixtures of Factor Analyzers, where instead we learn nonlinear subspaces in data. IFA can also be considered a method for blind source separation. The IFA generative model is hierarchical, with each factor modeled as an independent Mixture of Gaussians, each mixture component representing a factor state. Computing expectations over factors quickly becomes intractable with increasing number of factors as this requires summation over exponentially many state configurations, making parameter estimation via Expectation Maximization (EM) with an exact E-step infeasible. Unlike the Variational method that has been proposed, we take a simulation based approach to obtain exact parameter estimates. We define prior distributions and use a Gibbs sampler to obtain samples from the parameter posterior. Application to synthetic data demonstrates effectiveness of the method in estimating model parameters and robustness to model permutation invariance.
引用
收藏
页码:5507 / 5510
页数:4
相关论文
共 50 条
  • [21] Multiple-trait analysis using Bayesian methods in animal breeding: A Gibbs sampling approach
    Firat, MZ
    [J]. TURKISH JOURNAL OF VETERINARY & ANIMAL SCIENCES, 2001, 25 (06): : 855 - 862
  • [22] The independent factor analysis approach to latent variable modelling
    Montanari, Angela
    Viroli, Cinzia
    [J]. STATISTICS, 2010, 44 (04) : 397 - 416
  • [23] CENSORED SURVIVAL MODELS FOR GENETIC EPIDEMIOLOGY - A GIBBS SAMPLING APPROACH
    GAUDERMAN, WJ
    THOMAS, DC
    [J]. GENETIC EPIDEMIOLOGY, 1994, 11 (02) : 171 - 188
  • [24] Markov-switching quantile autoregression: a Gibbs sampling approach
    Liu, Xiaochun
    Luger, Richard
    [J]. STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2018, 22 (02):
  • [25] ADAPTIVE REJECTION SAMPLING FOR GIBBS SAMPLING
    GILKS, WR
    WILD, P
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1992, 41 (02) : 337 - 348
  • [26] On particle Gibbs sampling
    Chopin, Nicolas
    Singh, Sumeetpal S.
    [J]. BERNOULLI, 2015, 21 (03) : 1855 - 1883
  • [27] Herded Gibbs Sampling
    Chen, Yutian
    Bornn, Luke
    de Freitas, Nando
    Eskelin, Mareija
    Fang, Jing
    Welling, Max
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [28] Gibbs Sampling with People
    Harrison, Peter M. C.
    Marjieh, Raja
    Adolfi, Federico
    Van Rijn, Pol
    Anglada-Tort, Manuel
    Tchernichovski, Ofer
    Larrouy-Maestri, Pauline
    Jacoby, Nori
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [29] Attention as Gibbs sampling
    Baddeley, Roland
    Stuijzand, Bobby
    [J]. PERCEPTION, 2015, 44 : 372 - 372
  • [30] Recycling Gibbs Sampling
    Martino, Luca
    Elvira, Victor
    Camps-Valls, Gustau
    [J]. 2017 25TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2017, : 171 - 175