Random pure states: Quantifying bipartite entanglement beyond the linear statistics

被引:43
|
作者
Vivo, Pierpaolo [1 ]
Pato, Mauricio P. [2 ]
Oshanin, Gleb [3 ,4 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05314970 Sao Paulo, SP, Brazil
[3] Univ Paris 06, Sorbonne Univ, UMR 7600, LPTMC, F-75005 Paris, France
[4] CNRS, UMR 7600, Lab Phys Theor Mat Condensee, F-75005 Paris, France
基金
英国工程与自然科学研究理事会; 巴西圣保罗研究基金会;
关键词
AVERAGE ENTROPY; PAGES CONJECTURE; EIGENVALUE; PROOF;
D O I
10.1103/PhysRevE.93.052106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the properties of entangled random pure states of a quantum system partitioned into two smaller subsystems of dimensions N and M. Framing the problem in terms of random matrices with a fixed-trace constraint, we establish, for arbitrary N <= M, a general relation between the n-point densities and the cross moments of the eigenvalues of the reduced density matrix, i.e., the so-called Schmidt eigenvalues, and the analogous functionals of the eigenvalues of the Wishart-Laguerre ensemble of the random matrix theory. This allows us to derive explicit expressions for two-level densities, and also an exact expression for the variance of von Neumann entropy at finite N, M. Then, we focus on the moments E{K-a} of the Schmidt number K, the reciprocal of the purity. This is a random variable supported on [1, N], which quantifies the number of degrees of freedom effectively contributing to the entanglement. We derive a wealth of analytical results for E{Ka} for N = 2 and 3 and arbitrary M, and also for square N = M systems by spotting for the latter a connection with the probability P(x(min)(GUE) >= root 2N xi) that the smallest eigenvalue x(min)(GUE) of an N x N matrix belonging to the Gaussian unitary ensemble is larger than root 2N xi. As a by-product, we present an exact asymptotic expansion for P(x(min)(GUE) >= root 2N xi) for finite N as xi -> infinity. Our results are corroborated by numerical simulations whenever possible, with excellent agreement.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] A GRAMIAN APPROACH TO ENTANGLEMENT IN BIPARTITE FINITE DIMENSIONAL SYSTEMS: THE CASE OF PURE STATES
    Gielerak, Roman
    Sawerwain, Marek
    QUANTUM INFORMATION & COMPUTATION, 2020, 20 (13-14) : 1081 - 1108
  • [32] Bipartite entanglement and hypergraph states
    Ri Qu
    Bing-jian Shang
    Juan Wang
    Yan-ru Bao
    Zong-shang Li
    Yi-ping Ma
    Da-wei Song
    Quantum Information Processing, 2015, 14 : 547 - 558
  • [33] Entanglement in Bipartite Quantum States
    Gupta, Ved Prakash
    Mandayam, Prabha
    Sunder, V. S.
    FUNCTIONAL ANALYSIS OF QUANTUM INFORMATION THEORY: A COLLECTION OF NOTES BASED ON LECTURES BY GILLES PISIER, K.R. PARTHASARATHY, VERN PAULSEN AND ANDREAS WINTER, 2015, 902 : 39 - 62
  • [34] Bipartite entanglement and hypergraph states
    Qu, Ri
    Shang, Bing-jian
    Wang, Juan
    Bao, Yan-ru
    Li, Zong-shang
    Ma, Yi-ping
    Song, Da-wei
    QUANTUM INFORMATION PROCESSING, 2015, 14 (02) : 547 - 558
  • [35] Quantifying Entanglement of Maximal Dimension in Bipartite Mixed States (vol 117, 190502, 2016)
    Sentis, Gael
    Eltschka, Christopher
    Guhne, Otfried
    Huber, Marcus
    Siewert, Jens
    PHYSICAL REVIEW LETTERS, 2019, 122 (16)
  • [36] Entanglement in bipartite pure states of an interacting boson gas obtained by local projective measurements
    Paraan, Francis N. C.
    Molina-Vilaplana, Javier
    Korepin, Vladimir E.
    Bose, Sougato
    PHYSICAL REVIEW A, 2011, 84 (03):
  • [37] Bipartite representations and many-body entanglement of pure states of N indistinguishable particles
    Cianciulli, J. A.
    Rossignoli, R.
    Di Tullio, M.
    Gigena, N.
    Petrovich, Federico
    PHYSICAL REVIEW A, 2024, 110 (03)
  • [38] Entanglement transformation between sets of bipartite pure quantum states using local operations
    Chau, H. F.
    Fung, Chi-Hang Fred
    Li, Chi-Kwong
    Poon, Edward
    Sze, Nung-Sing
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (12)
  • [39] Entanglement of Pure States
    Stig Stenholm
    Foundations of Physics, 2009, 39 : 642 - 655
  • [40] Entanglement of Pure States
    Stenholm, Stig
    FOUNDATIONS OF PHYSICS, 2009, 39 (06) : 642 - 655