Random pure states: Quantifying bipartite entanglement beyond the linear statistics

被引:43
|
作者
Vivo, Pierpaolo [1 ]
Pato, Mauricio P. [2 ]
Oshanin, Gleb [3 ,4 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05314970 Sao Paulo, SP, Brazil
[3] Univ Paris 06, Sorbonne Univ, UMR 7600, LPTMC, F-75005 Paris, France
[4] CNRS, UMR 7600, Lab Phys Theor Mat Condensee, F-75005 Paris, France
基金
英国工程与自然科学研究理事会; 巴西圣保罗研究基金会;
关键词
AVERAGE ENTROPY; PAGES CONJECTURE; EIGENVALUE; PROOF;
D O I
10.1103/PhysRevE.93.052106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the properties of entangled random pure states of a quantum system partitioned into two smaller subsystems of dimensions N and M. Framing the problem in terms of random matrices with a fixed-trace constraint, we establish, for arbitrary N <= M, a general relation between the n-point densities and the cross moments of the eigenvalues of the reduced density matrix, i.e., the so-called Schmidt eigenvalues, and the analogous functionals of the eigenvalues of the Wishart-Laguerre ensemble of the random matrix theory. This allows us to derive explicit expressions for two-level densities, and also an exact expression for the variance of von Neumann entropy at finite N, M. Then, we focus on the moments E{K-a} of the Schmidt number K, the reciprocal of the purity. This is a random variable supported on [1, N], which quantifies the number of degrees of freedom effectively contributing to the entanglement. We derive a wealth of analytical results for E{Ka} for N = 2 and 3 and arbitrary M, and also for square N = M systems by spotting for the latter a connection with the probability P(x(min)(GUE) >= root 2N xi) that the smallest eigenvalue x(min)(GUE) of an N x N matrix belonging to the Gaussian unitary ensemble is larger than root 2N xi. As a by-product, we present an exact asymptotic expansion for P(x(min)(GUE) >= root 2N xi) for finite N as xi -> infinity. Our results are corroborated by numerical simulations whenever possible, with excellent agreement.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Entanglement measure for pure M⊗N bipartite quantum states
    Heydari, H
    Björk, G
    OPTICS AND SPECTROSCOPY, 2005, 99 (03) : 379 - 385
  • [22] Experimental realization of deterministic entanglement transformations of bipartite pure states
    Wu, Wei
    Liu, Wei-Tao
    Han, Yang
    Chen, Ping-Xing
    Li, Cheng-Zu
    OPTICS COMMUNICATIONS, 2009, 282 (10) : 2093 - 2096
  • [23] Entanglement convertibility for infinite-dimensional pure bipartite states
    Owari, M
    Matsumoto, K
    Murao, M
    PHYSICAL REVIEW A, 2004, 70 (05): : 050301 - 1
  • [24] Nonclassical photon statistics and bipartite entanglement generation of excited coherent states
    R. Soorat
    S. Nitharshini
    M. Anil Kumar
    S. K. Singh
    Quantum Information Processing, 2020, 19
  • [25] Nonclassical photon statistics and bipartite entanglement generation of excited coherent states
    Soorat, R.
    Nitharshini, S.
    Kumar, M. Anil
    Singh, S. K.
    QUANTUM INFORMATION PROCESSING, 2020, 19 (09)
  • [26] General entanglement-assisted transformation for bipartite pure quantum states
    Song, Wei
    Huang, Yan
    Liu, Nai-Le
    Chen, Zeng-Bing
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (04) : 785 - 792
  • [27] A bipartite dass of entanglement monotones for N-qubit pure states
    Emary, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (34): : 8293 - 8302
  • [28] Local Statistical Properties of Schmidt Eigenvalues of Bipartite Entanglement for a Random Pure State
    Liu, Dang-Zheng
    Zhou, Da-Sheng
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (04) : 725 - 766
  • [29] Entanglement of Three-Qubit Random Pure States
    Enriquez, Marco
    Delgado, Francisco
    Zyczkowski, Karol
    ENTROPY, 2018, 20 (10):
  • [30] Random bipartite entanglement from W and W-like states
    Fortescue, Ben
    Lo, Hoi-Kwong
    PHYSICAL REVIEW LETTERS, 2007, 98 (26)