Random pure states: Quantifying bipartite entanglement beyond the linear statistics

被引:43
|
作者
Vivo, Pierpaolo [1 ]
Pato, Mauricio P. [2 ]
Oshanin, Gleb [3 ,4 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Univ Sao Paulo, Inst Fis, Caixa Postal 66318, BR-05314970 Sao Paulo, SP, Brazil
[3] Univ Paris 06, Sorbonne Univ, UMR 7600, LPTMC, F-75005 Paris, France
[4] CNRS, UMR 7600, Lab Phys Theor Mat Condensee, F-75005 Paris, France
基金
英国工程与自然科学研究理事会; 巴西圣保罗研究基金会;
关键词
AVERAGE ENTROPY; PAGES CONJECTURE; EIGENVALUE; PROOF;
D O I
10.1103/PhysRevE.93.052106
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze the properties of entangled random pure states of a quantum system partitioned into two smaller subsystems of dimensions N and M. Framing the problem in terms of random matrices with a fixed-trace constraint, we establish, for arbitrary N <= M, a general relation between the n-point densities and the cross moments of the eigenvalues of the reduced density matrix, i.e., the so-called Schmidt eigenvalues, and the analogous functionals of the eigenvalues of the Wishart-Laguerre ensemble of the random matrix theory. This allows us to derive explicit expressions for two-level densities, and also an exact expression for the variance of von Neumann entropy at finite N, M. Then, we focus on the moments E{K-a} of the Schmidt number K, the reciprocal of the purity. This is a random variable supported on [1, N], which quantifies the number of degrees of freedom effectively contributing to the entanglement. We derive a wealth of analytical results for E{Ka} for N = 2 and 3 and arbitrary M, and also for square N = M systems by spotting for the latter a connection with the probability P(x(min)(GUE) >= root 2N xi) that the smallest eigenvalue x(min)(GUE) of an N x N matrix belonging to the Gaussian unitary ensemble is larger than root 2N xi. As a by-product, we present an exact asymptotic expansion for P(x(min)(GUE) >= root 2N xi) for finite N as xi -> infinity. Our results are corroborated by numerical simulations whenever possible, with excellent agreement.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Distribution of bipartite entanglement for random pure states
    Giraud, Olivier
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (11) : 2793 - 2801
  • [2] Fidelity and entanglement of random bipartite pure states: insights and applications
    Biswas, George
    Hu, Shao-Hua
    Wu, Jun-Yi
    Biswas, Debasish
    Biswas, Anindya
    PHYSICA SCRIPTA, 2024, 99 (07)
  • [3] Measuring the entanglement of bipartite pure states
    Sancho, JMG
    Huelga, SF
    PHYSICAL REVIEW A, 2000, 61 (04): : 7
  • [4] Measuring the entanglement of bipartite pure states
    2000, American Physical Society (61):
  • [5] Asymptotic entanglement manipulation of bipartite pure states
    Bowen, Garry
    Datta, Nilanjana
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (08) : 3677 - 3686
  • [6] Entanglement splitting of pure bipartite quantum states
    Bruss, Dagmar
    Physical Review A - Atomic, Molecular, and Optical Physics, 1999, 60 (06): : 4344 - 4348
  • [7] Protocols for entanglement transformations of bipartite pure states
    D'Ariano, GM
    Sacchi, MF
    PHYSICAL REVIEW A, 2003, 67 (04):
  • [8] Entanglement splitting of pure bipartite quantum states
    Bruss, D
    PHYSICAL REVIEW A, 1999, 60 (06): : 4344 - 4348
  • [9] Quantifying Entanglement of Maximal Dimension in Bipartite Mixed States
    Sentis, Gael
    Eltschka, Christopher
    Guehne, Otfried
    Huber, Marcus
    Siewert, Jens
    PHYSICAL REVIEW LETTERS, 2016, 117 (19)
  • [10] Uniqueness of the entanglement measure for bipartite pure states and thermodynamics
    Vedral, V
    Kashefi, E
    PHYSICAL REVIEW LETTERS, 2002, 89 (03) : 379031 - 379034