LOCAL EXISTENCE AND UNIQUENESS OF THE DYNAMICAL EQUATIONS OF AN INCOMPRESSIBLE MEMBRANE IN TWO-DIMENSIONAL SPACE

被引:0
|
作者
Hu, Dan [1 ,2 ]
Song, Peng [1 ,2 ]
Zhang, Pingwen [1 ,2 ]
机构
[1] Peking Univ, LMAM, Beijing 100871, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Membrane; incompressible; existence; uniqueness; bending elasticity; FLUID MEMBRANES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The dynamics of a membrane is a coupled system of a moving elastic surface and an incompressible membrane fluid. The difficulties in analyzing such a system include the nonlinearity of the curved space (geometric nonlinearity), the nonlinearity of the fluid dynamics (fluid nonlinearity), and the coupling to the surface incompressibility. In the two-dimensional case, the fluid vanishes and the system reduces to a coupling of a wave equation and an elliptic equation. Here we prove the local existence and uniqueness of the solution to the system by constructing a suitable discrete scheme and proving the compactness of the discrete solutions. The risk of blowing up due to the geometric nonlinearity is overcome by the bending elasticity
引用
收藏
页码:783 / 796
页数:14
相关论文
共 50 条
  • [21] Stochastic Incompressible Euler Equations in a Two-dimensional Domain
    Bessaih, Hakima
    Stochastic Analysis: A Series of Lectures, 2015, 68 : 135 - 155
  • [22] Uniqueness for the Two-Dimensional Euler Equations on Domains with Corners
    Lacave, Christophe
    Miot, Evelyne
    Wang, Chao
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (06) : 1725 - 1756
  • [23] Existence and Uniqueness Theorems for the Two-Dimensional Ericksen–Leslie System
    Gregory A. Chechkin
    Tudor S. Ratiu
    Maxim S. Romanov
    Vyacheslav N. Samokhin
    Journal of Mathematical Fluid Mechanics, 2016, 18 : 571 - 589
  • [24] An Investigation on Existence, Uniqueness, and Approximate Solutions for Two-Dimensional Nonlinear Fractional Integro-Differential Equations
    Eftekhari, Tahereh
    Rashidinia, Jalil
    MATHEMATICS, 2023, 11 (04)
  • [25] Small-time local stabilization of the two-dimensional incompressible Navier-Stokes equations
    Xiang, Shengquan
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2023, 40 (06): : 1487 - 1511
  • [26] Existence, uniqueness and stability of an inverse problem for two-dimensional convective Brinkman–Forchheimer equations with the integral overdetermination
    Pardeep Kumar
    Manil T. Mohan
    Banach Journal of Mathematical Analysis, 2022, 16
  • [27] THE TWO-DIMENSIONAL INCOMPRESSIBLE BOUSSINESQ EQUATIONS WITH GENERAL CRITICAL DISSIPATION
    Jiu, Quansen
    Miao, Changxing
    Wu, Jiahong
    Zhang, Zhifei
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (05) : 3426 - 3454
  • [28] A Characteristic Mapping method for the two-dimensional incompressible Euler equations
    Yin, Xi-Yuan
    Mercier, Olivier
    Yadav, Badal
    Schneider, Kai
    Nave, Jean-Christophe
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 424
  • [29] A NUMERICAL STABILITY ANALYSIS FOR THE TWO-DIMENSIONAL INCOMPRESSIBLE EULER EQUATIONS
    FOREMAN, MGG
    BENNETT, AF
    JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 79 (01) : 70 - 84
  • [30] Existence and Uniqueness Theorems for the Two-Dimensional Ericksen-Leslie System
    Chechkin, Gregory A.
    Ratiu, Tudor S.
    Romanov, Maxim S.
    Samokhin, Vyacheslav N.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2016, 18 (03) : 571 - 589