Uniqueness for the Two-Dimensional Euler Equations on Domains with Corners

被引:18
|
作者
Lacave, Christophe [1 ]
Miot, Evelyne [2 ]
Wang, Chao [3 ]
机构
[1] Univ Paris 06, Sorbonne Univ, Sorbonne Paris Cite,Univ Paris Diderot, Inst Math Jessieu Paris Rive Gauche,UMR CNRS 7586, F-75013 Paris, France
[2] Ecole Polytech, Ctr Math Laurent Schwartz, UMR 7640, F-91128 Palaiseau, France
[3] Peking Univ, Beijing Int Ctr Math Res, Beijing 100871, Peoples R China
关键词
Two-dimensional incompressible flow; uniqueness of weak solution; domains with corners; SPACES; FLUID; FLOWS;
D O I
10.1512/iumj.2014.63.5402
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove uniqueness of the solution of the Euler equations with bounded vorticity for bounded simply connected planar domains with corners forming acute angles. Our strategy consists in mapping such domains on the unit disk via a biholomorphism. We then establish log-Lipschitz regularity for the resulting push-forward of the velocity field, which leads to uniqueness thanks to a Gronwall estimate involving the Lagrangian trajectories on the unit disk.
引用
收藏
页码:1725 / 1756
页数:32
相关论文
共 50 条