The Two-Dimensional Euler Equations on Singular Domains

被引:0
|
作者
David Gérard-Varet
Christophe Lacave
机构
[1] Université Paris-Diderot (Paris 7),
[2] Institut de Mathématiques de Jussieu-Paris Rive Gauche,undefined
[3] UMR 7586-CNRS,undefined
关键词
Vorticity; Euler Equation; Exterior Domain; Domain Continuity; Global Weak Solution;
D O I
暂无
中图分类号
学科分类号
摘要
We establish the existence of global weak solutions of the two-dimensional incompressible Euler equations for a large class of non-smooth open sets. Loosely, these open sets are the complements (in a simply connected domain) of a finite number of obstacles with positive Sobolev capacity. Existence of weak solutions with Lp vorticity is deduced from a property of domain continuity for the Euler equations that relates to the so-called γ-convergence of open sets. Our results complete those obtained for convex domains in Taylor (Progress in Nonlinear Differential Equations and their Applications, Vol. 42, 2000), or for domains with asymptotically small holes (Iftimie et al. in Commun Partial Differ Equ 28(1–2), 349–379, 2003; Lopes Filho in SIAM J Math Anal 39(2), 422–436, 2007).
引用
收藏
页码:131 / 170
页数:39
相关论文
共 50 条
  • [1] The Two-Dimensional Euler Equations on Singular Domains
    Gerard-Varet, David
    Lacave, Christophe
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 209 (01) : 131 - 170
  • [2] The Two Dimensional Euler Equations on Singular Exterior Domains
    David Gérard-Varet
    Christophe Lacave
    [J]. Archive for Rational Mechanics and Analysis, 2015, 218 : 1609 - 1631
  • [3] The Two Dimensional Euler Equations on Singular Exterior Domains
    Gerard-Varet, David
    Lacave, Christophe
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (03) : 1609 - 1631
  • [4] Uniqueness for the Two-Dimensional Euler Equations on Domains with Corners
    Lacave, Christophe
    Miot, Evelyne
    Wang, Chao
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2014, 63 (06) : 1725 - 1756
  • [5] A singular Liouville equation on two-dimensional domains
    Marcelo Montenegro
    Matheus F. Stapenhorst
    [J]. Annali di Matematica Pura ed Applicata (1923 -), 2023, 202 : 2447 - 2480
  • [6] A singular Liouville equation on two-dimensional domains
    Montenegro, Marcelo
    Stapenhorst, Matheus F.
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (05) : 2447 - 2480
  • [7] Entropic Regularization of the Discontinuous Galerkin Method for Two-Dimensional Euler Equations in Triangulated Domains
    Kriksin Y.A.
    Tishkin V.F.
    [J]. Mathematical Models and Computer Simulations, 2023, 15 (5) : 781 - 791
  • [8] Solutions of Euler equations on the two-dimensional sphere
    Kazazi, Elahe
    Ghahremani-Gol, Hajar
    [J]. 2021 52ND ANNUAL IRANIAN MATHEMATICS CONFERENCE (AIMC), 2021, : 48 - 49
  • [9] Two-dimensional Euler equations in an exterior domain
    Cheng, H
    Ling, H
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 53 (3-4) : 335 - 350
  • [10] On the stochastic Euler equations in a two-dimensional domain
    Kim, JU
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 33 (05) : 1211 - 1227