Sparse dynamic inner principal component analysis for process monitoring

被引:0
|
作者
Guo, Lingling [1 ]
Wu, Ping [1 ]
Lou, Siwei [1 ]
Gao, Jinfeng [1 ]
机构
[1] Zhejiang Sci Tech Univ, Fac Mech Engn & Automat, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
sparse; dynamic; elastic net regularization; process monitoring; fault identification;
D O I
10.1109/cac48633.2019.8996201
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a novel sparse dynamic inner principal component analysis (SDiPCA) method is proposed for process monitoring. First, a simple regression-type approach of dynamic inner principal component analysis (DiPCA) is discussed. To derive sparse principal components, an elastic net regularization is imposed on this regression-type problem. Then a new optimization criterion is established and solved through an alternating algorithm. On the basis of the SDiPCA model, four monitoring statistics are constructed to reflect the process status. Also, the reconstruction-based contribution (RBC) method is employed to isolate faulty variables. Finally, a case study on the Tennessee Eastman process is conducted to illustrate the superior performance of the proposed SDiPCA method compared with DiPCA method.
引用
收藏
页码:1542 / 1547
页数:6
相关论文
共 50 条
  • [31] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [32] Streaming Sparse Principal Component Analysis
    Yang, Wenzhuo
    Xu, Huan
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 494 - 503
  • [33] Sparse Generalised Principal Component Analysis
    Smallman, Luke
    Artemiou, Andreas
    Morgan, Jennifer
    [J]. PATTERN RECOGNITION, 2018, 83 : 443 - 455
  • [34] Dynamic reconstruction principal component analysis for process monitoring and fault detection in the cold rolling industry
    Li, Hanqi
    Jia, Mingxing
    Mao, Zhizhong
    [J]. JOURNAL OF PROCESS CONTROL, 2023, 128
  • [35] Weighted sparse principal component analysis
    Van Deun, Katrijn
    Thorrez, Lieven
    Coccia, Margherita
    Hasdemir, Dicle
    Westerhuis, Johan A.
    Smilde, Age K.
    Van Mechelen, Iven
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2019, 195
  • [36] Biobjective sparse principal component analysis
    Carrizosa, Emilio
    Guerrero, Vanesa
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2014, 132 : 151 - 159
  • [37] Sparse kernel principal component analysis
    Tipping, ME
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 633 - 639
  • [38] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    [J]. Science China Information Sciences, 2014, 57 : 1 - 14
  • [39] Joint sparse principal component analysis
    Yi, Shuangyan
    Lai, Zhihui
    He, Zhenyu
    Cheung, Yiu-ming
    Liu, Yang
    [J]. PATTERN RECOGNITION, 2017, 61 : 524 - 536
  • [40] Nonlinear Process Monitoring Based on Multi-block Dynamic Kernel Principal Component Analysis
    Deng, Jiawei
    Deng, Xiaogang
    Wang, Lei
    Zhang, Xiaoling
    [J]. 2018 13TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2018, : 1058 - 1063