Time series prediction with ensemble models applied to the CATS benchmark

被引:15
|
作者
Wichard, Joerg D.
Ogorzalek, Maciej
机构
[1] Inst Mol Pharmacol, Mol Modelling Grp, D-13125 Berlin, Germany
[2] AGH Univ Sci & Technol, Dept Elect Engn, PL-30059 Krakow, Poland
基金
日本学术振兴会;
关键词
neural networks; ensemble methods; time series prediction;
D O I
10.1016/j.neucom.2005.12.136
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We describe the use of ensemble methods to build models for time series prediction. Our approach extends the classical ensemble methods for neural networks by using several different model architectures. We further suggest an iterated prediction procedure to select the final ensemble members. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2371 / 2378
页数:8
相关论文
共 50 条
  • [1] Time series prediction competition: The CATS benchmark
    Lendasse, Amaury
    Oja, Erkki
    Simula, Olli
    Verleysen, Michel
    [J]. NEUROCOMPUTING, 2007, 70 (13-15) : 2325 - 2329
  • [2] Time series prediction with ensemble models
    Wichard, JD
    Gorzalek, M
    [J]. 2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 1625 - 1630
  • [3] Iterated time series prediction with ensemble models
    Wichard, JD
    Ogorzalek, M
    [J]. PROCEEDINGS OF THE 23RD IASTED INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION, AND CONTROL, 2004, : 512 - 517
  • [4] Time series prediction using chaotic neural networks on the CATS benchmark
    Beliaev, Igor
    Kozma, Robert
    [J]. NEUROCOMPUTING, 2007, 70 (13-15) : 2426 - 2439
  • [5] Evolving Ensemble of Fuzzy Models for Multivariate Time Series Prediction
    Bueno, Lourenco
    Costa, Pyramo
    Mendes, Israel
    Cruz, Enderson
    Leite, Daniel
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [6] Ensemble Learning Models Applied in Energy Time Series of a University Building
    Ortiz-Aguirre, Isaakc
    Espinoza-Andaluz, Mayken
    Barzola-Monteses, Julio
    [J]. 2022 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI), 2022, : 119 - 124
  • [7] Intelligible fuzzy models applied to time series prediction and control
    Garriga-Berga, C
    [J]. RECENT ADVANCES IN ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2004, 113 : 161 - 168
  • [8] Time series prediction of the CATS benchmark using Fourier bandpass filters and competitive associative nets
    Kurogi, Shuichi
    Sawa, Miho
    Ueno, Takamasa
    [J]. NEUROCOMPUTING, 2007, 70 (13-15) : 2354 - 2362
  • [9] CATS benchmark time series prediction by Kalman smoother with cross-validated noise density
    Sarkka, Simo
    Vehtari, Aki
    Lampinen, Jouko
    [J]. NEUROCOMPUTING, 2007, 70 (13-15) : 2331 - 2341
  • [10] Adaptive Ensemble Models of Extreme Learning Machines for Time Series Prediction
    van Heeswijk, Mark
    Miche, Yoan
    Lindh-Knuutila, Tiina
    Hilbers, Peter A. J.
    Honkela, Timo
    Oja, Erkki
    Lendasse, Amaury
    [J]. ARTIFICIAL NEURAL NETWORKS - ICANN 2009, PT II, 2009, 5769 : 305 - +