Adaptive Ensemble Models of Extreme Learning Machines for Time Series Prediction

被引:0
|
作者
van Heeswijk, Mark [1 ]
Miche, Yoan [1 ,2 ]
Lindh-Knuutila, Tiina [1 ,4 ]
Hilbers, Peter A. J. [3 ]
Honkela, Timo [1 ]
Oja, Erkki [1 ]
Lendasse, Amaury [1 ]
机构
[1] Aalto Univ, Adapt Informat Res Ctr, POB 5400, Helsinki 02015, Finland
[2] INPG Grenoble Gipsa Lab, F-38402 Grenoble, France
[3] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[4] Int Comp Sci Inst Univ California, Berkeley, CA 94704 USA
基金
芬兰科学院;
关键词
time series prediction; sliding window; extreme learning machine; ensemble models; nonstationarity; adaptivity;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we investigate the application of adaptive ensemble models of Extreme Learning Machines (ELMs) to the problem of one-step ahead prediction in (non)stationary time series. We verify that the method works on stationary time series and test the adaptivity of the ensemble model on a nonstationary time series. In the experiments, we show that the adaptive ensemble model achieves a test error comparable to the best methods, while keeping adaptivity. Moreover, it has low computational cost.
引用
收藏
页码:305 / +
页数:2
相关论文
共 50 条
  • [1] AN ADAPTIVE ENSEMBLE MODEL OF EXTREME LEARNING MACHINE FOR TIME SERIES PREDICTION
    Wang, Hong
    Fan, Wei
    Sun, Fengwei
    Qian, Xiaojian
    [J]. 2015 12TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2015, : 80 - 85
  • [2] A PSO Boosted Ensemble of Extreme Learning Machines for Time Series Forecasting
    Porto, Alain
    Irigoyen, Eloy
    Larrea, Mikel
    [J]. INTERNATIONAL JOINT CONFERENCE SOCO'18-CISIS'18- ICEUTE'18, 2019, 771 : 324 - 333
  • [3] Time Series Prediction based on Ensemble Fuzzy Extreme Learning Machine
    Wang, Hong
    Li, Lei
    Fan, Wei
    [J]. 2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 2001 - 2005
  • [4] Time series prediction with ensemble models
    Wichard, JD
    Gorzalek, M
    [J]. 2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 1625 - 1630
  • [5] Extreme ensemble of extreme learning machines
    Mansoori, Eghbal G.
    Sara, Massar
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2021, 14 (02) : 116 - 128
  • [6] Adaptive ensemble of extreme learning machines and application to fault diagnosis
    [J]. Yin, G. (gang.gang88@163.com), 1600, Nanjing University of Aeronautics an Astronautics (33):
  • [7] Wireless channel prediction using ensemble of Extreme Learning Machines
    Stojanovic, Milos
    Sekulovic, Nikola
    Panajotovic, Aleksandra
    Popovic, Predrag
    Protic, Milan
    [J]. 2021 56TH INTERNATIONAL SCIENTIFIC CONFERENCE ON INFORMATION, COMMUNICATION AND ENERGY SYSTEMS AND TECHNOLOGIES (ICEST), 2021, : 167 - 170
  • [8] An adaptive ensemble of on-line Extreme Learning Machines with variable forgetting factor for dynamic system prediction
    Soares, Symone G.
    Araujo, Rui
    [J]. NEUROCOMPUTING, 2016, 171 : 693 - 707
  • [9] Ensemble of extreme learning machine for landslide displacement prediction based on time series analysis
    Cheng Lian
    Zhigang Zeng
    Wei Yao
    Huiming Tang
    [J]. Neural Computing and Applications, 2014, 24 : 99 - 107
  • [10] Ensemble of extreme learning machine for landslide displacement prediction based on time series analysis
    Lian, Cheng
    Zeng, Zhigang
    Yao, Wei
    Tang, Huiming
    [J]. NEURAL COMPUTING & APPLICATIONS, 2014, 24 (01): : 99 - 107