Realization of the infinite-dimensional symmetries of conformal mechanics

被引:9
|
作者
Cadoni, M
Carta, P
Mignemi, S
机构
[1] Univ Cagliari, Dipartimento Fis, I-09042 Monserrato, Italy
[2] Ist Nazl Fis Nucl, Sez Cagliari, Cagliari, Italy
[3] Univ Cagliari, Dipartimento Matemat, I-09123 Cagliari, Italy
关键词
D O I
10.1103/PhysRevD.62.086002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the possibility of realizing the infinite dimensional symmetries of conformal mechanics as time reparametrizations, generalizing the realization of the SL(2,R) symmetry of the de Alfaro-Fubini-Furlan model in terms of quasiprimary fields. We find that this is possible using an appropriate generalization of the transformation law for the quasiprimary fields.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [21] On balanced realization and finite-dimensional approximation for infinite-dimensional nonlinear systems
    Fujimoto, Kenji
    Ono, Sayaka
    [J]. 47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 4215 - 4220
  • [22] Infinite-dimensional Lie groups of symmetries of the ideal MHD equilibrium equations
    Bogoyavlenskij, OI
    [J]. GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 713 - 716
  • [23] Stuart Vortices Extended to a Sphere Admits Infinite-Dimensional Generalized Symmetries
    Ifidon, E. O.
    [J]. STUDIES IN APPLIED MATHEMATICS, 2010, 125 (03) : 265 - 273
  • [24] INFINITE-DIMENSIONAL DYNAMIC-SYSTEMS IN FLUID-MECHANICS
    TEMAM, R
    [J]. PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 45 : 431 - 445
  • [25] On Bu-Hamiltonian equations in mechanics of infinite-dimensional systems
    S. A. Budochkina
    V. M. Savchin
    [J]. Doklady Mathematics, 2011, 84 : 525 - 526
  • [26] On Bu-Hamiltonian Equations in Mechanics of Infinite-Dimensional Systems
    Budochkina, S. A.
    Savchin, V. M.
    [J]. DOKLADY MATHEMATICS, 2011, 84 (01) : 525 - 526
  • [27] On the realization of symmetries in quantum mechanics
    Keller K.J.
    Papadopoulos N.A.
    Reyes-Lega A.F.
    [J]. Mathematische Semesterberichte, 2008, 55 (2) : 149 - 160
  • [28] QUANTUM CONFORMAL FIELD-THEORY AS AN INFINITE-DIMENSIONAL NONCOMMUTATIVE GEOMETRY
    YUREV, DV
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1991, 46 (04) : 135 - 163
  • [29] REALIZATION AND APPROXIMATION OF LINEAR INFINITE-DIMENSIONAL SYSTEMS WITH ERROR-BOUNDS
    GLOVER, K
    CURTAIN, RF
    PARTINGTON, JR
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (04) : 863 - 898
  • [30] Finite and infinite-dimensional symmetries of pure N=2 supergravity in D=4
    Houart, Laurent
    Kleinschmidt, Axel
    Hornlund, Josef Lindman
    Persson, Daniel
    Tabti, Nassiba
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2009, (08):