Finite and infinite-dimensional symmetries of pure N=2 supergravity in D=4

被引:4
|
作者
Houart, Laurent [1 ]
Kleinschmidt, Axel
Hornlund, Josef Lindman
Persson, Daniel
Tabti, Nassiba
机构
[1] Univ Libre Bruxelles, Serv Phys Theor & Math, B-1050 Brussels, Belgium
来源
关键词
Extended Supersymmetry; Supergravity Models; Global Symmetries; KAC-MOODY ALGEBRAS; BLACK-HOLES; E-11; DUALITY; GRAVITY; IIB;
D O I
10.1088/1126-6708/2009/08/098
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study the symmetries of pure N = 2 supergravity in D = 4. As is known, this theory reduced on one Killing vector is characterised by a non-linearly realised symmetry SU(2, 1) which is a non-split real form of SL(3, C). We consider the BPS brane solutions of the theory preserving half of the supersymmetry and the action of SU(2, 1) on them. Furthermore we provide evidence that the theory exhibits an underlying algebraic structure described by the Lorentzian Kac-Moody group SU(2, 1)(+++). This evidence arises both from the correspondence between the bosonic space-time fields of N = 2 supergravity in D = 4 and a one-parameter sigma-model based on the hyperbolic group SU(2, 1)(++), as well as from the fact that the structure of BPS brane solutions is neatly encoded in SU(2, 1)(+++). As a nice by-product of our analysis, we obtain a regular embedding of the Kac-Moody algebra su(2, 1)(+++) in e(11) based on brane physics.
引用
收藏
页数:56
相关论文
共 50 条
  • [1] INFINITE-DIMENSIONAL GENERALIZATIONS OF FINITE-DIMENSIONAL SYMMETRIES
    FRADKIN, ES
    LINETSKY, VY
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) : 1218 - 1226
  • [2] INFINITE-DIMENSIONAL SYMMETRIES
    DOEBNER, HD
    TOLAR, J
    [J]. ANNALEN DER PHYSIK, 1990, 47 (2-3) : 116 - 122
  • [3] Realization of the infinite-dimensional symmetries of conformal mechanics
    Cadoni, M
    Carta, P
    Mignemi, S
    [J]. PHYSICAL REVIEW D, 2000, 62 (08) : 1 - 4
  • [4] Infinite-dimensional symmetries of two-dimensional coset models
    Lue, H.
    Perry, Malcolm J.
    Pope, C. N.
    [J]. NUCLEAR PHYSICS B, 2009, 806 (03) : 656 - 683
  • [5] Symmetries and first integrals in the mechanics of infinite-dimensional systems
    Savchin, V. M.
    Budochkina, S. A.
    [J]. DOKLADY MATHEMATICS, 2009, 79 (02) : 189 - 190
  • [6] Conditional and Hidden Infinite-Dimensional Symmetries of Wave Equations
    I. Yehorchenko
    A. Vorobyova
    [J]. Ukrainian Mathematical Journal, 2022, 74 : 378 - 384
  • [7] Infinite-dimensional quasigroups of finite orders
    Potapov, V. N.
    [J]. MATHEMATICAL NOTES, 2013, 93 (3-4) : 479 - 486
  • [8] Infinite-dimensional quasigroups of finite orders
    V. N. Potapov
    [J]. Mathematical Notes, 2013, 93 : 479 - 486
  • [9] Standard Model Fermions and Infinite-Dimensional R Symmetries
    Meissner, Krzysztof A.
    Nicolai, Hermann
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (09)
  • [10] Symmetries and first integrals in the mechanics of infinite-dimensional systems
    V. M. Savchin
    S. A. Budochkina
    [J]. Doklady Mathematics, 2009, 79 : 189 - 190