Realization of the infinite-dimensional symmetries of conformal mechanics

被引:9
|
作者
Cadoni, M
Carta, P
Mignemi, S
机构
[1] Univ Cagliari, Dipartimento Fis, I-09042 Monserrato, Italy
[2] Ist Nazl Fis Nucl, Sez Cagliari, Cagliari, Italy
[3] Univ Cagliari, Dipartimento Matemat, I-09123 Cagliari, Italy
关键词
D O I
10.1103/PhysRevD.62.086002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the possibility of realizing the infinite dimensional symmetries of conformal mechanics as time reparametrizations, generalizing the realization of the SL(2,R) symmetry of the de Alfaro-Fubini-Furlan model in terms of quasiprimary fields. We find that this is possible using an appropriate generalization of the transformation law for the quasiprimary fields.
引用
收藏
页码:1 / 4
页数:4
相关论文
共 50 条
  • [1] Symmetries and first integrals in the mechanics of infinite-dimensional systems
    Savchin, V. M.
    Budochkina, S. A.
    [J]. DOKLADY MATHEMATICS, 2009, 79 (02) : 189 - 190
  • [2] Symmetries and first integrals in the mechanics of infinite-dimensional systems
    V. M. Savchin
    S. A. Budochkina
    [J]. Doklady Mathematics, 2009, 79 : 189 - 190
  • [3] INFINITE-DIMENSIONAL SYMMETRIES
    DOEBNER, HD
    TOLAR, J
    [J]. ANNALEN DER PHYSIK, 1990, 47 (2-3) : 116 - 122
  • [4] INFINITE-DIMENSIONAL GENERALIZATIONS OF FINITE-DIMENSIONAL SYMMETRIES
    FRADKIN, ES
    LINETSKY, VY
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) : 1218 - 1226
  • [5] Infinite-dimensional Categorical Quantum Mechanics
    Gogioso, Stefano
    Genovese, Fabrizio
    [J]. ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2017, (236): : 51 - 69
  • [6] Infinite-dimensional symmetries of two-dimensional coset models
    Lue, H.
    Perry, Malcolm J.
    Pope, C. N.
    [J]. NUCLEAR PHYSICS B, 2009, 806 (03) : 656 - 683
  • [7] Conditional and Hidden Infinite-Dimensional Symmetries of Wave Equations
    I. Yehorchenko
    A. Vorobyova
    [J]. Ukrainian Mathematical Journal, 2022, 74 : 378 - 384
  • [8] Conditional and Hidden Infinite-Dimensional Symmetries of Wave Equations
    Yehorchenko, I
    Vorobyova, A.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2022, 74 (03) : 378 - 384
  • [9] Standard Model Fermions and Infinite-Dimensional R Symmetries
    Meissner, Krzysztof A.
    Nicolai, Hermann
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (09)
  • [10] On the concept of point value in the infinite-dimensional realization theory
    Immonen, E
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 300 (01) : 79 - 101