Subject matching for cross-subject EEG-based recognition of driver states related to situation awareness

被引:27
|
作者
Li, Ruilin [1 ,2 ]
Wang, Lipo [1 ]
Sourina, Olga [2 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore 639798, Singapore
[2] Fraunhofer Singapore, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
Situation awareness; Electroencephalography (EEG); Transfer learning; Machine learning; Classification; BATCH NORMALIZATION; CLASSIFICATION;
D O I
10.1016/j.ymeth.2021.04.009
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Situation awareness (SA) has received much attention in recent years because of its importance for operators of dynamic systems. Electroencephalography (EEG) can be used to measure mental states of operators related to SA. However, cross-subject EEG-based SA recognition is a critical challenge, as data distributions of different subjects vary significantly. Subject variability is considered as a domain shift problem. Several attempts have been made to find domain-invariant features among subjects, where subject-specific information is neglected. In this work, we propose a simple but efficient subject matching framework by finding a connection between a target (test) subject and source (training) subjects. Specifically, the framework includes two stages: (1) we train the model with multi-source domain alignment layers to collect source domain statistics. (2) During testing, a distance is computed to perform subject matching in the latent representation space. We use a reciprocal exponential function as a similarity measure to dynamically select similar source subjects. Experiment results show that our framework achieves a state-of-the-art accuracy 74.32% for the Taiwan driving dataset.
引用
收藏
页码:136 / 143
页数:8
相关论文
共 50 条
  • [41] EEG-based cross-subject passive music pitch perception using deep learning models
    Meng, Qiang
    Tian, Lan
    Liu, Guoyang
    Zhang, Xue
    COGNITIVE NEURODYNAMICS, 2025, 19 (01)
  • [42] InstanceEasyTL: An Improved Transfer-Learning Method for EEG-Based Cross-Subject Fatigue Detection
    Zeng, Hong
    Zhang, Jiaming
    Zakaria, Wael
    Babiloni, Fabio
    Gianluca, Borghini
    Li, Xiufeng
    Kong, Wanzeng
    SENSORS, 2020, 20 (24) : 1 - 17
  • [43] Cross-Subject Emotion Recognition Using Fused Entropy Features of EEG
    Zuo, Xin
    Zhang, Chi
    Hamalainen, Timo
    Gao, Hanbing
    Fu, Yu
    Cong, Fengyu
    ENTROPY, 2022, 24 (09)
  • [44] Joint EEG Feature Transfer and Semisupervised Cross-Subject Emotion Recognition
    Peng, Yong
    Liu, Honggang
    Kong, Wanzeng
    Nie, Feiping
    Lu, Bao-Liang
    Cichocki, Andrzej
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (07) : 8104 - 8115
  • [45] EEG Feature Selection for Emotion Recognition Based on Cross-subject Recursive Feature Elimination
    Zhang, Wei
    Yin, Zhong
    PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 6256 - 6261
  • [46] Hybrid transfer learning strategy for cross-subject EEG emotion recognition
    Lu, Wei
    Liu, Haiyan
    Ma, Hua
    Tan, Tien-Ping
    Xia, Lingnan
    FRONTIERS IN HUMAN NEUROSCIENCE, 2023, 17
  • [47] Cross-Subject Emotion Recognition Based on Domain Similarity of EEG Signal Transfer Learning
    Ma, Yuliang
    Zhao, Weicheng
    Meng, Ming
    Zhang, Qizhong
    She, Qingshan
    Zhang, Jianhai
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 936 - 943
  • [48] Cross-Subject Channel Selection Using Modified Relief and Simplified CNN-Based Deep Learning for EEG-Based Emotion Recognition
    Farokhah, Lia
    Sarno, Riyanarto
    Fatichah, Chastine
    IEEE ACCESS, 2023, 11 : 110136 - 110150
  • [49] Domain Adaptation for Cross-Subject Emotion Recognition by Subject Clustering
    Liu, Jin
    Shen, Xinke
    Song, Sen
    Zhang, Dan
    2021 10TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2021, : 904 - 908
  • [50] FMLAN: A novel framework for cross-subject and cross-session EEG emotion recognition
    Yu, Peng
    He, Xiaopeng
    Li, Haoyu
    Dou, Haowen
    Tan, Yeyu
    Wu, Hao
    Chen, Badong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 100