On minimizing sequences for k-centres

被引:6
|
作者
Lember, H [1 ]
机构
[1] EURANDOM, NL-5600 MB Eindhoven, Netherlands
关键词
k-centre; empirical measure; Kadec-Klee property;
D O I
10.1016/S0021-9045(02)00010-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P be a Borel measure on a separable metric space (E, d). Given an integer k greater than or equal to 1 and a nondecreasing function phi: R+--> R+ we seek to approximate P by a subset of E which, amongst all subsets of at most k elements, minimizes the function W-k (A, P) := integralphi(d(x,A))P(dx). Any set that minimizes W-k(.,P) is called a k-centre of P. We study the convergence of W-k(., P)-minimizing sequences in noncompact spaces. As an application we prove a consistency result for empirical k-centres. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:20 / 35
页数:16
相关论文
共 50 条