Moduli and periods of supersymmetric curves

被引:6
|
作者
Codogni, Giulio [1 ]
Viviani, Filippo [1 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat & Fis, Largo San Leonardo Murialdo 1, I-00146 Rome, Italy
关键词
SUPER RIEMANN SURFACES; SUPERMODULI; GEOMETRY; STACKS; SPACE;
D O I
10.4310/ATMP.2019.v23.n2.a2
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Supersymmetric curves are the analogue of Riemann surfaces in super geometry. We establish some foundational results about (Deligne-Mumford) complex superstacks, and we then prove that the moduli superstack of supersymmetric curves is a smooth Deligne-Mumford complex superstack. We then show that the superstack of supersymmetric curves admits a coarse complex superspace, which, in this case, is just an ordinary complex space. In the second part of this paper we discuss the period map. We remark that the period domain is the moduli space of ordinary abelian varieties endowed with a symmetric theta divisor, and we then show that the differential of the period map is surjective. In other words, we prove that any first order deformation of a classical Jacobian is the Jacobian of a supersymmetric curve.
引用
收藏
页码:345 / 402
页数:58
相关论文
共 50 条
  • [31] Galois covers of moduli of curves
    Boggi, M
    Pikaart, M
    COMPOSITIO MATHEMATICA, 2000, 120 (02) : 171 - 191
  • [32] The moduli space of curves is rigid
    Hacking, Paul
    ALGEBRA & NUMBER THEORY, 2008, 2 (07) : 809 - 818
  • [33] A minicourse oil moduli of curves
    Looijenga, E
    MODULI SPACES IN ALGEBRAIC GEOMETRY, 2000, 1 : 267 - +
  • [34] ON THE PROJECTIVITY OF THE MODULI SPACES OF CURVES
    CORNALBA, MDT
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1993, 443 : 11 - 20
  • [35] WEIERSTRASS POINTS AND MODULI OF CURVES
    ARBARELLO, E
    COMPOSITIO MATHEMATICA, 1974, 29 (03) : 325 - 342
  • [36] A MODULI STACK OF TROPICAL CURVES
    Cavalieri, Renzo
    Chan, Melody
    Ulirsch, Martin
    Wise, Jonathan
    FORUM OF MATHEMATICS SIGMA, 2020, 8
  • [37] Random trees and moduli of curves
    Okounkov, A
    ASYMPTOTIC COMBINATORICS WITH APPLICATIONS TO MATHEMATICAL PHYSICS, 2003, 1815 : 89 - 126
  • [38] Moduli of curves on Enriques surfaces
    Ciliberto, Ciro
    Dedieu, Thomas
    Galati, Concettina
    Knutsen, Andreas Leopold
    ADVANCES IN MATHEMATICS, 2020, 365
  • [39] THE TROPICALIZATION OF THE MODULI SPACE OF CURVES
    Abramovich, Dan
    Caporaso, Lucia
    Payne, Sam
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2015, 48 (04): : 765 - 809
  • [40] A calculus for the moduli space of curves
    Pandharipande, Rahul
    ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 1, 2018, 97 : 459 - 487