The moduli space of curves is rigid

被引:3
|
作者
Hacking, Paul [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
关键词
moduli; curve; rigidity;
D O I
10.2140/ant.2008.2.809
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the moduli stack (M) over bar (g,n) of stable curves of genus g with n marked points is rigid, that is, has no infinitesimal deformations. This confirms the first case of a principle proposed by Kapranov. It can also be viewed as a version of Mostow rigidity for the mapping class group.
引用
收藏
页码:809 / 818
页数:10
相关论文
共 50 条
  • [1] k-DIFFERENTIALS ON CURVES AND RIGID CYCLES IN MODULI SPACE
    Mullane, Scott
    DOCUMENTA MATHEMATICA, 2021, 26 : 1817 - 1850
  • [2] THE COHOMOLOGY OF THE MODULI SPACE OF CURVES
    HARER, JL
    LECTURE NOTES IN MATHEMATICS, 1988, 1337 : 138 - 221
  • [3] PREFIXED CURVES IN MODULI SPACE
    Buff, Xavier
    Epstein, Adam L.
    Koch, Sarah
    AMERICAN JOURNAL OF MATHEMATICS, 2022, 144 (06) : 1485 - 1509
  • [4] THE TROPICALIZATION OF THE MODULI SPACE OF CURVES
    Abramovich, Dan
    Caporaso, Lucia
    Payne, Sam
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2015, 48 (04): : 765 - 809
  • [5] A calculus for the moduli space of curves
    Pandharipande, Rahul
    ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 1, 2018, 97 : 459 - 487
  • [6] Covers of elliptic curves and the moduli space of stable curves
    Chen, Dawei
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 649 : 167 - 205
  • [7] A NEW COMPACTIFICATION OF THE MODULI SPACE OF CURVES
    SCHUBERT, D
    COMPOSITIO MATHEMATICA, 1991, 78 (03) : 297 - 313
  • [8] ON THE KODAIRA DIMENSION OF THE MODULI SPACE OF CURVES
    HARRIS, J
    MUMFORD, D
    INVENTIONES MATHEMATICAE, 1982, 67 (01) : 23 - 86
  • [9] THE EULER CHARACTERISTIC OF THE MODULI SPACE OF CURVES
    HARER, J
    ZAGIER, D
    INVENTIONES MATHEMATICAE, 1986, 85 (03) : 457 - 485
  • [10] The moduli space of quasistable spin curves
    Abreu, Alex
    Pacini, Marco
    Taboada, Danny
    COLLECTANEA MATHEMATICA, 2024, 75 (01) : 27 - 80