Simulated annealing for topological solitons

被引:24
|
作者
Hale, M [1 ]
Schwindt, O
Weidig, T
机构
[1] Univ Durham, Ctr Particle Theory, Durham DH1 3LE, England
[2] Univ Manchester, Dept Phys, Manchester M60 1QD, Lancs, England
关键词
D O I
10.1103/PhysRevE.62.4333
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The search for solutions of field theories allowing for topological solitons requires that we find the field configuration with the lowest energy in a given sector of topological charge. The standard approach is based on the numerical solution of the static Euler-Lagrange differential equation following from the field energy. As an alternative, we propose to use a simulated annealing algorithm to minimize the energy functional directly. We have applied simulated annealing to several nonlinear classical field theories: the sine-Gordon model in one dimension, the baby Skyrme model in two dimensions and the nuclear Skyrme model in three dimensions. We describe in detail the implementation of the simulated annealing algorithm, present our results and get independent confirmation of the studies which have used standard minimization techniques.
引用
收藏
页码:4333 / 4346
页数:14
相关论文
共 50 条
  • [31] TOPOLOGICAL SOLITONS AND GEOMETRICAL FRUSTRATION
    VILLAINGUILLOT, S
    DANDOLOFF, R
    SAXENA, A
    BISHOP, AR
    PHYSICAL REVIEW B, 1995, 52 (09): : 6712 - 6722
  • [32] Quantum nucleation of topological solitons
    Eto, Minoru
    Nitta, Muneto
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (09)
  • [33] ON SOME TOPOLOGICAL SOLITONS IN FERRONEMATICS
    KUMAR, PBS
    RANGANATH, GS
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1991, 196 : 27 - 37
  • [34] Topological solitons in nonlinear electrodynamics
    Kalbermann, G
    PRESENT STATUS OF THE QUANTUM THEORY OF LIGHT: PROCEEDINGS OF A SYMPOSIUM IN HONOUR OF JEAN-PIERRE VIGIER, 1997, 80 : 45 - 55
  • [35] Noncommuting Momenta of Topological Solitons
    Watanabe, Haruki
    Murayama, Hitoshi
    PHYSICAL REVIEW LETTERS, 2014, 112 (19)
  • [36] Topological solitons and folded proteins
    Chernodub, Maxim
    Hu, Shuangwei
    Niemi, Antti J.
    PHYSICAL REVIEW E, 2010, 82 (01):
  • [37] TOPOLOGICAL SOLITONS IN POLYETHYLENE CRYSTALS
    ZHANG, F
    COLLINS, MA
    PHYSICAL REVIEW E, 1994, 49 (06): : 5804 - 5811
  • [38] Nuclei as superposition of topological solitons
    Acus, A.
    Norvaisas, E.
    Riska, D. O.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E, 2008, 17 (01): : 212 - 216
  • [39] Quantum nucleation of topological solitons
    Minoru Eto
    Muneto Nitta
    Journal of High Energy Physics, 2022
  • [40] Topological Solitons in the CPN Model
    Peng-Ming Zhang
    Xi-Guo Lee
    Shao-Feng Wu
    International Journal of Theoretical Physics, 2007, 46 : 3234 - 3241