Simulated annealing for topological solitons

被引:24
|
作者
Hale, M [1 ]
Schwindt, O
Weidig, T
机构
[1] Univ Durham, Ctr Particle Theory, Durham DH1 3LE, England
[2] Univ Manchester, Dept Phys, Manchester M60 1QD, Lancs, England
关键词
D O I
10.1103/PhysRevE.62.4333
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The search for solutions of field theories allowing for topological solitons requires that we find the field configuration with the lowest energy in a given sector of topological charge. The standard approach is based on the numerical solution of the static Euler-Lagrange differential equation following from the field energy. As an alternative, we propose to use a simulated annealing algorithm to minimize the energy functional directly. We have applied simulated annealing to several nonlinear classical field theories: the sine-Gordon model in one dimension, the baby Skyrme model in two dimensions and the nuclear Skyrme model in three dimensions. We describe in detail the implementation of the simulated annealing algorithm, present our results and get independent confirmation of the studies which have used standard minimization techniques.
引用
收藏
页码:4333 / 4346
页数:14
相关论文
共 50 条
  • [21] SIMULATED ANNEALING
    BERTSIMAS, D
    TSITSIKLIS, J
    STATISTICAL SCIENCE, 1993, 8 (01) : 10 - 15
  • [22] SIMULATED ANNEALING
    AZENCOTT, R
    ASTERISQUE, 1988, (161-62) : 223 - 237
  • [23] Simulated annealing
    Kvasnicka, V
    Pospichal, J
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 1996, (34) : 7 - 49
  • [24] Simulated annealing, weighted simulated annealing and genetic algorithm at work
    Bergeret, F
    Besse, P
    COMPUTATIONAL STATISTICS, 1997, 12 (04) : 447 - 465
  • [25] Rotating topological edge solitons
    Ivanov, Sergey K.
    Kartashov, Yaroslav V.
    OPTICS LETTERS, 2023, 48 (05) : 1268 - 1271
  • [26] Topological aspects of solitons in ferromagnets
    Ren Ji-Rong
    Wang Ji-Biao
    Li Ran
    Xu Dong-Hui
    Duan Yi-Shi
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (03) : 777 - 780
  • [27] Topological solitons in optical oscillators
    Yaparov, V. V.
    Taranenko, V. B.
    JOURNAL OF OPTICS, 2016, 18 (07)
  • [28] Relations among topological solitons
    Nitta, Muneto
    PHYSICAL REVIEW D, 2022, 105 (10)
  • [29] Topological solitons in helical strings
    Nisoli, Cristiano
    Balatsky, Alexander V.
    PHYSICAL REVIEW E, 2015, 91 (06)
  • [30] Particles as stable topological solitons
    Faber, Manfried
    EMERQUM 11: EMERGENT QUANTUM MECHANICS 2011 (HEINZ VON FOERSTER CONGRESS), 2012, 361