Lattice Boltzmann method to study the wateroxygen distributions in porous transport layer (PTL) of polymer electrolyte membrane (PEM) electrolyser

被引:33
|
作者
Paliwal, Shubhani [1 ]
Panda, Debashis [1 ]
Bhaskaran, Supriya [1 ,2 ]
Vorhauer-Huget, Nicole [2 ]
Tsotsas, Evangelos [2 ]
Surasani, Vikranth Kumar [1 ]
机构
[1] Birla Inst Technol & Sci, Dept Chem Engn, Pilani Hyderabad Campus, Hyderabad 500078, India
[2] Otto von Guericke Univ, Thermal Proc Engn, Univ Pl 2, D-39106 Magdeburg, Germany
关键词
Lattice Boltzmann method; PEM water electrolyser; Porosity distribution; MPL; Anode PTL; Hydrogen storage; PORE-SCALE; SIMULATION; FLOW; BEHAVIOR; NETWORK;
D O I
10.1016/j.ijhydene.2021.04.112
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Anodic porous transport layer (PTL) plays a pivotal role in the performance of the polymer electrolyte membrane (PEM) water electrolyser. In this study, Shen-Chen Lattice Boltzmann Method (SC-LBM) is implemented to study the invasion patterns (IP) of O-2 in a water saturated anodic PTL. Multiphase flow patterns in anodic PTL obtained with the LBM simulations are validated with the experiment results. Simulations are conducted for varied Capillary number (Ca) and Bond number (Bo) to study the competitiveness between the capillary, viscous forces and gravity. A dimensionless number (phi) is defined to develop a set of optimized parameters to enhance O-2 removal. The O-2 saturations along the normalized length reveal importance of void space microstructure in PTL. Thus, positive and negative porosity gradients are implemented from catalyst layer (CL) to water flow channel to understand invasion patterns. The results inspire to consider a random micro porous layer (MPL) near the CL to minimize the accumulation of O-2. Such parametric analysis and pore structure studies is a promising technique for the optimisation of the O-2 removal process. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:22747 / 22762
页数:16
相关论文
共 50 条
  • [1] Effect of Microstructure of Porous Transport Layer on Performance in Polymer Electrolyte Membrane Water Electrolyser
    Majasan, Jude O.
    Iacoviello, Francesco
    Shearing, Paul R.
    Brett, Dan J. L.
    3RD ANNUAL CONFERENCE IN ENERGY STORAGE AND ITS APPLICATIONS (3RD CDT-ESA-AC), 2018, 151 : 111 - 119
  • [2] Lattice Boltzmann Simulation on Water Transport in Gas Diffusion Layer of Polymer Electrolyte Membrane Fuel Cells
    Jeon, Dong Hyup
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELING, SIMULATION AND APPLIED MATHEMATICS (CMSAM 2016), 2016, : 22 - 25
  • [3] Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell
    Hao, Liang
    Cheng, Ping
    JOURNAL OF POWER SOURCES, 2010, 195 (12) : 3870 - 3881
  • [4] Effect of compression on water transport in gas diffusion layer of polymer electrolyte membrane fuel cell using lattice Boltzmann method
    Jeon, Dong Hyup
    Kim, Hansang
    JOURNAL OF POWER SOURCES, 2015, 294 : 393 - 405
  • [5] Hybrid Lattice Boltzmann Agglomeration Method for Modeling Transport Phenomena in Polymer Electrolyte Membrane Fuel Cells
    Satjaritanun, P.
    Cetinbas, F. C.
    Hirano, S.
    Zenyuk, I. V.
    Ahluwalia, R. K.
    Shimpalee, S.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (04)
  • [6] A review of the porous transport layer in polymer electrolyte membrane water electrolysis
    Doan, Tuan Linh
    Lee, Han Eol
    Shah, Syed Shabbar Hassan
    Kim, MinJoong
    Kim, Chang-Hee
    Cho, Hyun-Seok
    Kim, Taekeun
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (10) : 14207 - 14220
  • [7] Large scale simulation of liquid water transport in a gas diffusion layer of polymer electrolyte membrane fuel cells using the lattice Boltzmann method
    Sakaida, Satoshi
    Tabe, Yutaka
    Chikahisa, Takemi
    JOURNAL OF POWER SOURCES, 2017, 361 : 133 - 143
  • [8] Effect of porosity gradient in cathode gas diffusion layer of polymer electrolyte membrane fuel cells on the liquid water transport using lattice Boltzmann method
    Habiballahi, Mohammad
    Hassanzadeh, Hasan
    Rahnama, Mohammad
    Mirbozorgi, Seyed Ali
    Javaran, Ebrahim Jahanshahi
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2021, 235 (03) : 546 - 562
  • [9] A comparative study on the Lattice Boltzmann Method and the VoF-Continuum method for oxygen transport in the anodic porous transport layer of an electrolyzer
    Sourya, Dasika Prabhat
    Gurugubelli, Pardha S.
    Bhaskaran, Supriya
    Vorhauer-Huget, Nicole
    Tsotsas, Evangelos
    Surasani, Vikranth Kumar
    International Journal of Hydrogen Energy, 2024, 92 : 1091 - 1098
  • [10] Superhydrophilic porous transport layer enhances efficiency of polymer electrolyte membrane electrolyzers
    Zhao, Benzhong
    Lee, ChungHyuk
    Lee, Jason K.
    Fahy, Kieran F.
    LaManna, Jacob M.
    Baltic, Elias
    Jacobson, David L.
    Hussey, Daniel S.
    Bazylak, Aimy
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (10):