Hybrid Lattice Boltzmann Agglomeration Method for Modeling Transport Phenomena in Polymer Electrolyte Membrane Fuel Cells

被引:11
|
作者
Satjaritanun, P. [1 ,2 ]
Cetinbas, F. C. [3 ]
Hirano, S. [4 ]
Zenyuk, I. V. [2 ]
Ahluwalia, R. K. [3 ]
Shimpalee, S. [1 ]
机构
[1] Univ South Carolina, Dept Chem Engn, Columbia, SC 29208 USA
[2] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Natl Fuel Cell Res Ctr, Irvine, CA USA
[3] Argonne Natl Lab, Div Energy Syst, Argonne, IL 60439 USA
[4] Ford Motor Co, Res & Innovat Ctr, Dearborn, MI 48121 USA
关键词
Catalyst Layer; Lattice Boltzmann Method; X-ray CT; PEMFC; Catalyst modeling;
D O I
10.1149/1945-7111/abf217
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The Hybrid Lattice Boltzmann Agglomeration Method (HLBAM) was employed to model transport phenomena and electrochemical kinetics in the catalyst layer of a polymer electrolyte membrane fuel cell (PEMFC). This work showed the advantages of using a direct modeling-based HLBAM approach, which incorporates the detailed structure of catalyst layers from X-ray computed tomography as well as local transport variables related characteristics and effective properties from the hybrid catalyst microstructure. The local transport variables and effective properties from the hybrid catalyst model were used to simulate the electrochemical kinetics inside the detailed structure of the catalyst layer. HLBAM can predict the distribution of local effective transport variables and electrochemical kinetics during cell operation. The studies included the prediction of liquid water saturation/evolution, heat transfer, species transport, and electrochemical kinetics inside the porous and catalyst layers relevant to fuel cell operation. HLBAM enables one to distinguish electrochemical distribution in the triple-phase boundaries at the catalyst sites. This method can expedite the development of porous components in PEMFCs in a cost-effective manner. The HLBAM simulation can assist the optimization of porous medium design and durability as well as provide insights into water management, particularly in the catalyst layer.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Numerical studies of interfacial phenomena in liquid water transport in polymer electrolyte membrane fuel cells using the lattice Boltzmann method
    Han, Bo
    Meng, Hua
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (12) : 5053 - 5059
  • [2] Modeling of Transport Phenomena In Polymer Electrolyte Fuel Cells
    Suh, Dong Myung
    Park, S. B.
    2010 12TH IEEE INTERSOCIETY CONFERENCE ON THERMAL AND THERMOMECHANICAL PHENOMENA IN ELECTRONIC SYSTEMS, 2010,
  • [3] Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries
    Xu, Ao
    Shyy, Wei
    Zhao, Tianshou
    ACTA MECHANICA SINICA, 2017, 33 (03) : 555 - 574
  • [4] Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries
    Ao Xu
    Wei Shyy
    Tianshou Zhao
    Acta Mechanica Sinica, 2017, 33 (03) : 555 - 574
  • [5] Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries
    Ao Xu
    Wei Shyy
    Tianshou Zhao
    Acta Mechanica Sinica, 2017, 33 : 555 - 574
  • [6] Phase separation modeling of water transport in polymer electrolyte membrane fuel cells using the Multiple-Relaxation-Time lattice Boltzmann method
    Park, Sungjea
    Kim, Myong-Hwan
    Um, Sukkee
    CHEMICAL ENGINEERING JOURNAL, 2024, 495
  • [7] Lattice Boltzmann Simulation on Water Transport in Gas Diffusion Layer of Polymer Electrolyte Membrane Fuel Cells
    Jeon, Dong Hyup
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELING, SIMULATION AND APPLIED MATHEMATICS (CMSAM 2016), 2016, : 22 - 25
  • [8] On the modeling of water transport in polymer electrolyte membrane fuel cells
    Wu, Hao
    Li, Xianguo
    Berg, Peter
    ELECTROCHIMICA ACTA, 2009, 54 (27) : 6913 - 6927
  • [9] Lattice Boltzmann simulation of liquid water transport in microporous and gas diffusion layers of polymer electrolyte membrane fuel cells
    Kim, Kwang Nam
    Kang, Jung Ho
    Lee, Sang Gun
    Nam, Jin Hyun
    Kim, Charn-Jung
    JOURNAL OF POWER SOURCES, 2015, 278 : 703 - 717
  • [10] A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells
    Weber, Adam Z.
    Borup, Rodney L.
    Darling, Robert M.
    Das, Prodip K.
    Dursch, Thomas J.
    Gu, Wenbin
    Harvey, David
    Kusoglu, Ahmet
    Litster, Shawn
    Mench, Matthew M.
    Mukundan, Rangachary
    Owejan, Jon P.
    Pharoah, Jon G.
    Secanell, Marc
    Zenyuk, Iryna V.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (12) : F1254 - F1299